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Abstract: Although regression to the mean is pervasive in data analysis, educational researchers often misconstrue it as evidence 
of genuine change and mistakenly attribute random changes to treatment effects. A statistical phenomenon where extreme values 
naturally move closer to the average after repeated treatment, regression to the mean is especially susceptible to misinterpretations 
in educational studies with pretest-posttest or longitudinal designs. In such studies, observed changes are frequently assumed to 
be the effects of treatment, even in cases where the changes are statistical artifacts. Using a hypothetical case and two real-world 
studies, this paper investigates the technical challenges that regression to the mean poses and introduces a hybrid Bayesian model 
that mitigates its effects more effectively than conventional approaches, such as multiple baseline adjustments and formulaic 
corrections. In particular, the hybrid Bayesian model relies on multiple baseline measurements to minimize distortions associated 
with regression to the mean during the pretest phase and leverages prior knowledge—such as standard deviations and population 
means—to refine post-test data adjustments. It follows that the model provides educational researchers with an innovative tool for 
accurately evaluating interventions and enhancing the effectiveness of various research-driven educational policies and practices. 
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Introduction 

Regression to the mean (RTM) is a purely statistical phenomenon that exerts a pervasive effect on datasets, yet many of 
its implications are widely misunderstood (Pinker, 2021). Whenever extreme values in a dataset move toward the 
average after repeated treatment, researchers often misinterpret such movements as evidence of causal effects rather 
than recognizing them as mere statistical artifacts (Isaac & Michael, 1995; Linden, 2013; Smith & Smith, 2005). In 
educational research, this tendency to misattribute random changes to treatment effects is problematic not just for the 
assessment of teacher effectiveness but also for the evaluation of teaching methods and curricula. In other words, the 
failure to recognize RTM can lead to inaccurate claims about the effectiveness of certain interventions, instructional 
methods, and curriculum changes. This problem is particularly pronounced in academic studies that rely upon pretest-
posttest or longitudinal designs (Asbury, 1974; see also Kahneman & Tversky, 1973). In educational research, the 
problem is compounded by the heavy reliance on standardized test scores and other such outcome measures that are 
inherently variable, often leading researchers to overlook RTM or treat random fluctuations as real performance changes. 

For example, Smith and Smith (2005) reported cases in which researchers attributed improvements in test scores to 
instructional interventions, even when many of the changes were due to statistical regression to the mean. Thorndike 
(1942) provided another example of this interpretation problem in a study where college students who had high 
standardized test scores but low grade-point averages (GPA) were considered “underachievers,” while their peers who 
had high GPAs but low-test scores were all considered “overachievers.” As with other cases, these interpretations did not 
reflect the possibility that RTM could explain such discrepancies. Furthermore, the psychologists Daniel Kahneman and 
Amos Tversky have emphasized that not only does RTM distort data interpretation, but it also leads to misguided policy 
decisions arising from a failure to account for statistical nuances. In a widely referenced paper, Kahneman and Tversky 
(1973) described how a group of flight school instructors enacted a training policy of positive reinforcement. Following 
the advice of school psychologists, the instructors consistently praised students for successfully executing complex 
maneuvers. However, they later observed that outstanding performances were often followed by a measurable decline 
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in subsequent attempts. Misinterpreting this pattern as evidence against the effectiveness of positive reinforcement, they 
abandoned the policy altogether. What they failed to recognize was that these changes were not causal effects but rather 
predictable instances of RTM (Kahneman & Tversky, 1973).  

This paper serves two purposes. First, it discusses how RTM insinuates itself in educational studies involving groups of 
students and how it is routinely addressed during study design or data analysis. Second, it relies on a hypothetical dataset 
and two empirical cases to contextualize RTM and introduce a hybrid Bayesian model that more effectively mitigates its 
distorting effects. The underlying argument is that despite its prevalence in educational research, RTM is not intractable.  

Theoretical Framework 

RTM is a counterintuitive statistical phenomenon that was first identified in two major experiments carried out by the 
polymath Francis Galton (1822–1911). In the first experiment, Galton (1886) studied RTM by planting sweet pea seeds 
of different sizes, grouping them into seven categories based on diameter. He then documented the offspring seeds that 
each plant yielded and calculated the average diameter of 100 seeds from each. The results revealed a distinct pattern: 
Whereas the smallest seeds tended to produce slightly larger offspring, the largest seeds produced slightly smaller ones, 
causing offspring seed sizes to regress toward the average diameter of the 100 seeds. Galton called this pattern regression 
to the mean, a term that would later give rise to the concept of regression in modern statistics. In the second experiment, 
Galton expanded his study of the same phenomenon to human height by reviewing the family records of 205 pairs of 
parents and their 928 adult children. Because the average man is 8% taller than the average woman, Galton scaled female 
heights by multiplying them by a factor of 1.08 before comparing them to male heights. He then calculated an average 
mid-parent height by averaging the heights of each mother and father. He then divided all the mid-parent heights into 
nine categories and calculated the median height of the children in each category.  

Once more, Galton’s (1886) findings demonstrated RTM: Parents who were taller or shorter than average had children 
whose heights gravitated toward the population average. Specifically, for every inch a parent’s height deviated from the 
mean, the child’s height was more likely to deviate by only 0.69 inches in the same direction. The consistency in the 
results of these seminal studies and the many others that followed make RTM a real statistical problem. However, as 
Pinker (2021) has suggested, RTM applies not only to the heights and IQs of parents and their children but also, more 
generally, to any two variables that are not perfectly correlated. An extreme value in one variable will tend to be 
associated with a less extreme value in the other. This, of course, does not mean that, eventually, all children will be of 
average height. Nor does it mean that the population will converge to an IQ of 100. What it does mean is that whenever 
an extreme value appears in a bell-shaped distribution, any other variable that is paired with it is unlikely to duplicate 
its outlier status. The puzzle is that in too many research studies, RTM is mistaken for evidence of change (Nesselroade 
et al., 1980; Pinker, 2021; see also Stigler, 1997). For example, in a study examining reading interventions for struggling 
students, researchers initially documented significant gains in reading scores following their treatments (Streiner, 2001). 
However, further analysis later showed that the gains were mainly attributable to RTM, as students selected on the basis 
of low initial scores were likely to improve mainly as a result of statistical probability, not as an effect of the treatments. 

In another study that investigated behavioral interventions in elementary schools, researchers found that students 
initially identified for disruptive behaviors showed significant improvements over time (Marsden & Torgerson, 2012). 
However, as Streiner (2001) pointed out, most of these improvements were subsequently attributed to RTM—upon 
repeated measurements, those extreme or disruptive behaviors naturally regressed toward the average. Building on this 
understanding, Illenberger et al. (2019) explored how RTM can similarly bias findings in policy evaluations when using 
synthetic controls (a method that estimates treatment effects by creating a weighted combination of control units to 
approximate an untreated counterfactual). Through simulations in a Difference-in-Differences (DID) framework, the 
researchers compared synthetic controls to nearest-neighbor matching and found that synthetic controls exacerbate 
RTM bias. This, in turn, increases the likelihood of falsely detecting treatment effects when no actual effects exist. Indeed, 
the synthetic control method aggregates information from all control units, which reduces estimator variance but, at the 
same time, increases confidence in biased outcomes. As a result, Type I error rates for synthetic controls could be nearly 
twice as high as those of other methods under certain conditions.   

To further analyze this effect, Illenberger et al. (2019) used permutation tests to evaluate the null hypothesis of no 
treatment effect. By systematically relabeling treated and control units in their dataset, the authors demonstrated how 
RTM bias can lead to spurious results. This analysis highlights the trade-off between improved precision and increased 
bias in synthetic controls and underscores the need for adjustments to ensure reliable inferences in the presence of RTM. 
Illenberger et al.’s (2019) findings align with those from behavioral intervention studies, highlighting the widespread 
impact of RTM across research contexts. These cases and many others illustrate how easily RTM can be mistaken for a 
genuine treatment effect. But as Yu and Chen (2015) have observed, this RTM problem is more prevalent in studies with 
pretest-posttest or longitudinal designs, perhaps because in such studies, researchers routinely select participants 
exhibiting extreme baseline scores to evaluate the impact of interventions so that for example, students with extremely 
low test scores could be assigned to a remedial program. The point is that without reliable controls, any improvements 
in repeated assessments may be attributed to interventions rather than RTM (Marsden & Torgerson, 2012). Another way 
of explaining this phenomenon is that in pretest-posttest or longitudinal research studies, repeated measurements are 
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subject to internal variability and measurement errors. And given that extreme scores are influenced by such errors, 
subsequent measurements are likely to be less extreme as the internal variability and errors level off. The problem is that 
whenever RTM is unaccounted for, natural fluctuations can be treated as measures of true change (Yu & Chen, 2015). 

Measuring the RTM Effect 

To see how weighty RTM can be, consider a hypothetical longitudinal study involving a population of 100 students with 
these attributes: Mean test score is 75 (0–100 scale); standard deviation (how spread the scores are across all students) 
is 10; and the within-student standard deviation σw (the random fluctuations in scores due to test-taking conditions) is 
6. Consider also that between-students standard deviation σb is derived from the total variance equation σt2 = σw2 + σb2, 
where σt2 is the total variance, σw2 is the within-student variance (variability in test scores for the same student) over 
repeated tests, and σb2 is the between-students variance or the true differences in students’ abilities and levels of 
preparation. Given that σt = 10 (the total standard deviation) and σw = 6 (or within-student standard deviation), σb2 = σt2 
− σw2 =102 −62 = 100 −36 = 64, which makes the between-students standard deviation (σb) = √64 = 8. This value suggests 
that the true difference in ability or preparation among the students contributes eight variability points to the overall 
score distribution. Using the same student population, let us further assume that (a) all the students’ test scores are 
normally distributed, (b) only students scoring below 60 are selected for some remedial programs, (c) only six students 
scored below 60, (d) the mean initial score of these six students is 55.05, and (e) their mean follow-up or post-
intervention score is 60.30, making the mean change in test scores (follow-up scores minus initial scores) equal to +5.25. 
If this change suggests significant performance improvement, the question is whether it could also be an artifact of RTM.  

The way to find out is to use the expected RTM formula: RTM = σw ⋅ (1 − ρ) ⋅ C(z), where σw is the within-student standard 
deviation that reflects how much a student’s test scores change as a result of random factors (test anxiety, etc.); ρ is the 
correlation between the initial and follow-up test scores and also reflects how reliably scores predict each other 
depending on the ratio of true student ability difference to the total variation in the population; and C(z) is a scaling factor 
reflecting the extremeness of the selection cutoff point—that is, C(z) increases as the cutoff (z score) becomes much more 
extreme or moves closer to the tails of the distribution. In the case of the hypothetical student population we are working 
with, C(z) is determined using the statistical table to find the z score of 1.5 (cutoff point of 60, mean of 75, standard 
deviation of 10), so that the value of C(z) is 1.85. We can calculate the expected RTM using these givens: σw = 6, ρ = 0.64 
(σb2/σt2) = 82/102 = 0.64, and C(z) = 1.85 (from the statistical tables), by plugging those givens in the RTM formula: σw ⋅ 
(1 − ρ) ⋅ C(z) = 6 × (1 − 0.64) × 1.85 = 6 × 0.36 × 1.85 = 4.19. Comparing the expected RTM effect of 4.19 points to the 5.25 
mean change in test scores calculated earlier, we find that the expected RTM effect is 79.81% (4.19 divided by 5.25) of 
the improvement. Put differently, the expected RTM effect accounts for 79.81% (≈80%) of the mean change in this case.  

Real-World Cases 

In one of the cases referenced earlier, Marsden and Torgerson (2012) reviewed a dataset compiled during a previous 
pretest–posttest study. To see if RTM affected the change scores of the students involved, the authors plotted those scores 
against pretest scores. If RTM was present, a negative correlation would emerge because on average students with high 
pretest scores would make smaller gains than students with lower pretest scores. Figure 1 shows that there was “a strong 
negative correlation (−0.65, p < .001) between the pre-test and change scores” (Marsden & Torgerson, 2012, p. 586).  

 

Figure 1. Pretest Scores Plotted Against Gains Between Pre- and Posttests 
Note. Data analyzed were adapted from Marsden and Torgerson (2012) 
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While studying the effects of RTM, Marsden and Torgerson (2012) compared 16 pre- and posttest gains across lower and 
upper quartile groups were compared based on pretest scores in four specific skill areas: listening, speaking, reading, 
and writing. Of the 16 comparisons (i.e., pre-to-post and pre-to-delayed posttests in two groups with four outcome 
measures), six demonstrated statistically significant improvement for the lower group, and four were statistically 
marginal. But in nearly all other cases, the participants in the lower group demonstrated much greater improvement than 
their peers in the upper group. These results further show how the effects of RTM can create the impression of bigger 
gains for underperforming students and produce serious misinterpretations (Smith, 1997). The bottom line is that in 
virtually all educational assessments, a certain portion of the variation in scores arises from random error. But this error 
is more pronounced at the extremes of the distribution, where test scores are farther from the average, and so when 
students are subsequently retested, the scores at the distribution tails are more likely to move toward the mean than the 
scores closer to the center. And even though not every student’s scores will regress to the mean, the majority will, causing 
the average scores at the extremes to converge toward the overall sample mean in subsequent tests (Marsden & 
Torgerson, 2012). Marsden and Torgerson’s review provides empirical evidence that the effects of RTM are more 
problematic in studies involving students whose baseline or preintervention scores were either very low or very high.  

In another pretest-posttest study, Nielsen et al. (2007) looked at variations in the learning styles of two cohorts of Danish 
college students at the start of the academic year (t1) and again a year later (t2). To document the students’ initial learning 
style scores, the authors used 14 learning styles to place each student in a low or high starting category. Anticipating that 
the effect of RTM could distort their findings, Nielsen et al. made appropriate corrections before analyzing the changes 
in the data they collected. The degree to which the effects of RTM would have distorted the outcomes of this study are 
presented in Table 1, where the mean changes in each learning style from t1 to t2 are shown with and without correction 
for RTM effect. This table shows that among students whose initial levels of learning styles were low, the corrected results 
show minimal changes except in the “internal” style, for which a significant increase was noted. The corrected results 
show slight reductions in learning style scores over time. In contrast, the uncorrected mean changes for the same low-
starting students incorrectly show that all learning styles increased, with more than 50% of the increases appearing 
significant. This contrast is yet another clue that RTM can lead researchers to mistake statistical artifacts for true changes. 

Table 1. Mean Differences in Learning Style Scores (t2 − t1) Corrected and Uncorrected for RTM Effect 

Learning style 

Level of specific learning styles at t1 
Low High 

Corrected 
(real change) 

Uncorrected 
(false change) 

Corrected 
(real change) 

Uncorrected 
(false change) 

Legislative −0.76 3.14* −0.18 −1.66* 
Executive 0.98 3.63** −0.30 −2.48** 
Judicial −1.34 1.15 −2.32** −3.59** 
Monarchic 0.38 2.62** 0.19 −1.76* 
Hierarchic −1.16 1.44 −0.98 −1.61** 
Oligarchic −0.87 1.05 0.64 2.10 
Anarchic −0.64 0.50 −0.04 −2.61* 
Democratic −0.02 2.53** 0.90 −0.61 
Global −0.07 2.56* −0.60 −3.69** 
Local 0.10 3.16** −0.75 −3.07** 
Internal −1.54*a 0.46 −0.74 −2.52** 
External 0.44 2.07** −0.31 −1.45** 
Liberal −1.18 0.52 0.57 −2.05 
Conservative 1.30 3.00** 0.35 −2.28* 
Note. Adapted from Nielsen et al. (2007)  

Controlling the RTM Effect 

According to Nielsen et al. (2007) and Marsden and Torgerson (2012), the RTM effect can be accounted for during study 
design or data analysis. The authors suggested that educational researchers can improve their study design by randomly 
assigning participants to control and experimental groups or by relying on multiple baseline scores. Random assignments 
to comparison groups expose students to the same RTM effects and ensure that any natural regression or statistical noise 
is distributed across both groups, canceling out the RTM effect when comparing pre- and post-test scores and making it 
easy to attribute differences in outcome to a given treatment. Another way to control the RTM effect during the design of 
a study is to take multiple baseline measurements so that instead of using one pretest score, the researcher will average 
two or more baseline scores to approximate the students’ “true” starting points. This step matters because when extreme 
scores are influenced by random fluctuations, a single measurement can overstate or understate a student’s ability due 
to random factors, such as test-day anxiety and occasional distractions (Marsden & Torgerson, 2012; Nielsen et al., 2007). 
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The third RTM control or mitigation strategy pertains to the study participant selection process itself. According to 
Marsden and Torgerson (2012), selecting students only on the basis of extreme scores is bound to produce RTM bias, 
because any scores at the extremes are more likely to move closer to the mean upon retesting, irrespective of 
intervention. One way to avoid this problem is to use an inclusive selection criterion. For example, rather than selecting 
only low-scoring students, researchers could select a mix of low-, medium-, and high-scoring students, or set a less 
extreme cutoff for the treatment group by selecting students who fall in the lowest 50% quartile in lieu of selecting them 
only from the lowest 25% quartile (Morton & Torgerson, 2005). 

To control the effect of RTM during data analysis, several mathematical models have been proposed. According to Nielsen 
et al. (2007), educational researchers doing a pretest-posttest or longitudinal study can use this model to correct posttest 
scores: RTM effect = (1 − ρ) ⋅ Xpre + ϵ, where ρ is the correlation between pretest and posttest scores, Xpre is the pretest 
score of one student and ϵ accounts for statistical noise. This model enables researchers to adjust observed post-test 
scores and mitigate biases arising from RTM. Another way of controlling the effects of RTM during data analysis is to use 
analysis of covariance (ANCOVA) to adjust posttest scores according to pretest scores (Marsden & Torgerson, 2012). The 
following ANCOVA model estimates treatment effects while accounting for baseline differences: Ypost = α + β ⋅ (Xpre − Xpre) 
+ γ ⋅ Group + ϵ, where Ypost represents the posttest score for an individual participant, α is the baseline value before any 
adjustments/contributions from other variables, β is the weight of the relationship between the predictor variable Xpre 

and the dependent variable Ypost, Xpre is the mean pretest score for the entire population being analyzed (it centers the 
baseline scores and ensures that adjustments account for group-level variations), γ is the coefficient for the group variable 
(it quantifies the difference in posttest outcomes between groups after accounting for such factors as baseline 
differences), and Group is a categorical variable that shows the group assignment of each participant (i.e., Group 1 vs. 
Group 2). The function of this last term of the ANCOVA model is to isolate the effect of group membership (i.e., treatment 
vs. control) on Ypost, the posttest score. 

Practical Applications 

All the techniques or approaches reviewed thus far can be applied in various educational contexts. But using the dataset 
arising from the hypothetical 100 student population we have been working with, let us now apply Marsden and 
Torgerson’s (2012) and Nielsen et al.’s (2007) recommendation. Table 2 provides a snapshot of that hypothetical dataset. 

Table 2. Summary Dataset 

Attribute Value Description 
Population size 100 Total number of students 
Population mean (μ) 75 Average test score of the population 
Total standard deviation (σt) 10 Total variability in the population’s test scores 

Within-student standard deviation (σw) 6 Random fluctuations in scores due to test-taking 
conditions 

Between-students variance (σb2) 64 Derived from total variance equation σt2 = σw2 + σb2 
Between-students standard deviation (σb) 8 Square root of between-students variance 

Cutoff for selection Scores below 60 
(z = 1.5) 

Cutoff point for selecting students for the 
intervention 

Selected students 6 Number of students scoring below the cutoff (60) 
Pretest mean of selected students (Xpre) 55.05 Average pretest score of the six selected students 
Posttest mean of selected students (Ypost) 60.30 Average posttest score of the six selected students 
Observed improvement 5.25 Difference between posttest and pretest means 

Correlation between pretest and posttest (ρ) 0.64 Ratio of true student ability differences to total 
variation 

RTM scaling factor C(z) 1.85 Factor reflecting extremeness of the selection cutoff 

Approach 1: Multiple Baseline Measurements  

Marsden and Torgerson’s (2012) recommendation can be applied in four steps. First, each student’s pretest score is 
measured at least twice, introducing Xpre1 and Xpre2, both drawn from N (55.05, 6). Second, calculate mean pretest scores 
for every student. For example, for a student whose Xpre1 and Xpre2 are 53 and 57, the mean pretest score Xpre-mean is 
Xpre1 + Xpre2

2
 = 53+57

2
= 55. Third, using the formula for the variability of the mean (σmean= 𝜎𝜎𝑤𝑤

√𝑛𝑛
), where n is the number of 

baseline measures, calculate σmean= 6
√2
≈ 4.24. Fourth, use the RTM effect formula: σw ⋅ (1 − ρ) ⋅ C(z) to recalculate the 

RTM effect as follows: 4.24 ⋅ (1 − 0.64) ⋅ 1.85 = 4.24 ⋅ 0.36 ⋅ 1.85 = 2.83. Prior to adjustment, σw was 6 (see Table 2), so the 
RTM effect was 6⋅ (1 − 0.64) ⋅ 1.85 = 6 ⋅ 0.36 ⋅1.85 = 4.19, which means that the RTM effect decreased from 4.19 to 2.83. 

Approach 2: Post-Test Score Adjustments 

Building on the outcomes of the first approach, this RTM mitigation process consists in applying Nielsen et al.’s (2007) 
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correction formula: Ycorrected =Ypost − RTM effect, where Ycorrected is the posttest score after mathematically adjusting for 
RTM. As previously noted, without taking at least two baselines, σw was 6, the RTM effect was 4.19, and Ypost was 60.30. 
In plugging these values in the correction formula, we find that Ycorrected = 60.30 −4.19 =56.11. However, after collecting 
two baseline scores, σw and the RTM effect decreased to 4.24 and 2.83. And since Ypost = 60.30, Ycorrected = 60.30 − 2.83 = 
57.47. The outcome of Nielsen et al.’s approach is captured in Table 3. 

Table 3. Comparative Analysis of Improvements 

                              Metric Before correction After correction 
Pretest mean (Xpre-mean) 55.05 55.05 
Posttest mean (Ypost) 60.30 57.47 
Improvement without correction (Ypost − Xpre-mean)  5.25 - 
Corrected posttest mean (Ycorrected) - 57.47 
Improvement after correction (Ycorrected − Xpre-mean) - 2.42 

Applying Marsden and Torgerson’s (2012) multiple baseline adjustments and Nielsen et al.’s (2007) formulaic 
corrections to our hypothetical 100-student population, we find that whereas the first approach is intended for use 
during study design, the second is designed for data analysis. The reason is that while Marsden and Torgerson’s approach 
controls RTM during study design by reducing variability and enhancing baseline estimates, Nielsen et al.’s recommended 
approach deals with RTM during data analysis by removing its effects from observed results. In other words, the two 
approaches are complementary and provide educational researchers with the practical tools they need to control the 
effects of RTM both before and after data collection. But even with such a grasp of RTM and the processes by which to 
control its distorting effect, Nielsen et al. (2007) and Marsden and Torgerson’s (2012) approaches carry two major flaws. 
The first is about how baseline scores are collected (Ledford & Gast, 2024). In concurrent multiple baseline designs, data 
collection is done simultaneously, and treatments are staggered over time (Kazdin, 2020), providing some experimental 
control. However, the method is not effective enough for reducing the RTM effect to its smallest expression because 
natural changes in test scores or human behavior may still appear as true treatment effects (Slocum et al., 2022). 
Conversely, nonconcurrent multiple baseline designs stagger data collection over time. But this method poses another 
problem, as overlapping baseline information and the intrusion of external factors make the tedium of isolating true 
treatment effects even harder (Kennedy, 2022).  

The second flaw lies in the nature of formulaic corrections, which rely on formulas to enhance the quality of observations 
by adjusting for RTM during data analysis. Mathematically sound as this approach seems, it works on the implicit 
assumption that the relationship between pretest and posttest scores is linear and stable across samples, even though 
the noisy, often nonlinear patterns characteristic of real-world data seldom conform to formulas. Moreover, the 
consistency of formulaic corrections depends heavily on accurate estimates of parameters such as standard deviations, 
correlation coefficients, and scaling factors, all of which are potential sources of error. The implication is that while 
formulaic corrections and multiple baseline adjustments are useful, neither is the optimal solution for the RTM problem.  

A Bayesian Model for Controlling RTM  

If the flaws identified in the preceding section seem intricate, we can sort them out using Bayesian regression 
(Drugowitsch, 2013; Mara, 2019). We can indeed use this hybrid Bayesian model to better control RTM: Yadjusted = Xpre-

mean + w (Ypost − Xpre-mean) + γ (RTM effect), where Xpre-mean is the stabilized pretest mean score obtained by averaging 
multiple baseline scores for a student or participant, Ypost is the observed posttest score after treatment, and w is the 
weight assigned to the observed changes (posttest minus pretest mean). Irrespective of the weight the model gives to the 
observed data versus prior knowledge, w will typically lie between 0 and 1, and γ is the weight given to the prior RTM 
effect. This weight adjusts how much of the RTM effect is factored in the correction based on the strength of that prior 
knowledge, and the RTM effect is derived from the formula: σw (1 − ρ) ⋅ C(z), where σw is the within-student variability, ρ 
is the correlation between pretest and posttest scores, and C(z) is the scaling factor we saw earlier. 

This new model is hybrid for several reasons. First, instead of using a single pretest score, it averages multiple baseline 
measurements and, therefore, decreases the variability (σw) in the data, which in turn drives the RTM effect downward. 
Second, the model uses prior knowledge, such as known population means and variances, to adjust post-test scores. 
Third, the model uses the RTM equation to calculate how much of the observed change is attributable to RTM. Fourth, 
the weights (w and γ) are leveraged to balance the contributions of the observed data and the prior RTM effect. For 
example, if w = 1 on a scale of 0 to 1, this hybrid Bayesian model relies fully on the observed data (posttest scores minus 
pretest scores) and disregards all adjustments for prior RTM knowledge. But if w = 0, the model disregards the observed 
data and relies entirely on the prior RTM effect. Likewise, if γ =1, the model assumes that the prior RTM knowledge 
perfectly explains the adjustment and applies it. And if γ = 0, the model ignores prior RTM knowledge and makes no 
corrections based on it. But the strength of this hybrid Bayesian model lies also in the fact that these weights are 
proportional and complementary, so that researchers can tweak them according to the reliability of the observed data or 
based on how much credence they give to the prior RTM estimates available. For example, whereas a w of 0.9 means that 
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90% of the observed improvement (the difference between pretest and posttest scores) is trusted as valid and used in 
the adjustment, a γ of 0.7 means that 70% of the estimated prior RTM effect (according to prior knowledge or 
assumptions about RTM in similar datasets) is factored into the adjustment.  

Returning to the same hypothetical population parameters we worked with earlier: Pretest mean (Xpre-mean) = 55.05, 
posttest mean (Ypost) = 60.30, and observed improvement (Ypost − Xpre-mean) = 5.25, and assuming (w) = 0.9 and (γ) = 0.7, 
here is how the model works. It uses weighted contributions to integrate observed data and prior RTM information, so 
that the adjusted posttest score is calculated as follows: Yadjusted = Xpre-mean + w (Ypost − Xpre-mean) + γ (RTM effect), that is: 
Yadjusted = 55.05 + 0.9 (60.30 − 55.05) + 0.7 (4.19) = 55.05 + 4.73 + 2.93 = 62.71. means that the true improvement in this 
example is Yadjusted − Xpre-mean = 62.71 − 55.05 = 7.66. All told, this hybrid Bayesian model (a) adjusts the RTM weight based 
on known or prior data, (b) includes both observed data and prior RTM knowledge and (c) produces a more reliable 
adjusted score that reflects empirical observations and theoretical expectations. But as with the other methods that 
Nielsen et al. (2007) and Marsden and Torgerson (2012) have recommended, this innovative model has its own 
limitations. It is computationally complex and requires more advanced statistical analyses than traditional techniques 
such as multiple baseline adjustments or formulaic corrections. It also requires prior data, such as σw (i.e., known or 
previously documented variability or within-student standard of deviation), as well as ρ (i.e., known or previously 
documented correlations between the pretest and posttest scores of comparable student groups).  

Conclusion 

In attempting to assemble the puzzle of RTM, this paper has placed into sharp relief the ways in which RTM distorts data 
interpretation in educational research (Cochrane et al., 2020). RTM often arises in normal distributions, where extreme 
values are unlikely to reappear because, in subsequent observations, they regress toward the mean. Yet, in some cases, 
RTM effects are the result of confounding variables or external factors that are completely unrelated to interventions but 
can distort the interpretation of changes, especially in pretest-posttest and longitudinal studies. More broadly, RTM can 
lead to false causal inferences. 

A textbook example is the illusion that criticism is far more productive than praise. As Pinker (2021) has observed, 
teachers often attribute a struggling student’s improvement after a bad grade or harsh criticism to the efficacy of these 
practices, even if the rebound is statistically predictable. Similarly, an extraordinary performance followed by a dip in 
subsequent attempts is often treated as evidence that praise is counterproductive. These common misinterpretations 
and many others justify the need for more comprehensive statistical methods with which educational researchers can 
disentangle true treatment or intervention effects from those driven by RTM. In comparing the methods recommended 
by Marsden and Torgerson (2012) and Nielsen et al. (2007) to the hybrid Bayesian model introduced in this paper, 
certain important distinctions emerged. The multiple baselines method stabilizes pretest scores through averaging but 
may yield conservative estimates as it does not fully account for residual RTM effects. Although useful, Nielsen et al.’s 
(2007) formulaic corrections depend on the precision of input parameters, such as σw (within-student variability) and ρ 
(the correlation coefficient). In contrast, the hybrid Bayesian model dynamically balances observed data with prior 
knowledge about RTM to ensure that corrections do not overestimate or underestimate the true effect of various 
treatments (Mara, 2019; Murphy, 2012). It follows that this paper advances the discourse on RTM by incorporating 
Bayesian principles into educational data analysis. The model’s versatility extends well beyond educational research, 
finding applications in various fields where RTM is a persistent concern. For example, in clinical trials, Bayesian methods 
can help distinguish true treatment effects from fluctuations in patient outcomes due to RTM, ensuring more accurate 
assessments of medical interventions. Environmental researchers can also rely on the model to disentangle RTM effects 
from true changes in ecological or climate datasets. Whether it is applied to large research studies or small classroom 
experiments, this hybrid Bayesian model optimally decreases the risks of taking RTM artifacts for true treatment effects. 
Even so, future research could focus on empirically testing the model in different educational conditions to evaluate its 
adaptability. Additional studies could also explore the model’s integration with advanced machine learning techniques 
to automate the calibration of prior parameters and further enhance its precision. Finally, expanding the model’s 
application to datasets in other spheres of academic research would provide great insights into its broader applications. 
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