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Abstract: A new index of item discrimination power (IDP), dimension-corrected Somers’ D (D2) is proposed. Somers’ D is one of the 
superior alternatives for item–total- (Rit) and item–rest correlation (Rir) in reflecting the real IDP with items with scales 0/1 and 
0/1/2, that is, up to three categories. D also reaches the extreme value +1 and ‒1 correctly while Rit and Rir cannot reach the 
ultimate values in the real-life testing settings. However, when the item has four categories or more, Somers’ D underestimates IDP 
more than Pearson correlation. A simple correction to Somers’ D in the polytomous case seems to lead to be effective in item analysis 
settings.  In the simulation with real-life items, D2 showed very few cases of obvious underestimation and practically no cases of 
obvious overestimation. With certain restrictions discussed in the article, D2 seems to be a good alternative for these classic 
estimators not only with dichotomous items but also with the polytomous ones. In general, the magnitudes of the estimates by D2 
are higher than those by Rit, Rir, and polychoric correlation and they seem to be close of those of bi- and polyserial correlation 
coefficients without out-of-range values. 
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Introduction 

Item discrimination and the deterministic pattern 

Item discrimination power (IDP)—one of the three essential parameters of a test item—is classically defined as the 
efficiency of a single item to discriminate between lower- and higher-scoring test-takers (see Educational Testing 
Service [ETS], 2020; Liu, 2008; Lord & Novick, 1968; MacDonald & Paunonen, 2002). Metsämuuronen (2020a) notes 
that this loose definition is not very practical while assessing the possible under- and overestimation produced by 
different estimators of IDP in the real-life settings. Hence, he discusses an operational definition of IDP related to the 
concept of deterministic item discrimination. Deterministic item discrimination refers to the pattern in which the score 
explains perfectly the behavior in the item, and then we expect to see the perfect explaining power between two 

variables ( 2 1XY  ) that implies the perfect association ( 1XY  ). In other words, when the latent trait can predict the 

behavior of the test-takers in the test item in a deterministic manner the test item is ultimately reliable. In practical 
settings related to item analysis, the perfect explaining power is achieved when the order of the cases both in the item 
and the score are identical. Hence, Metsämuuronen defines the ultimate IDP as a condition where “after arranging the 
test-takers by the score, or the measurement scale, the item can discriminate the lower performing test-takers from the 
higher performing test-takers in a deterministic manner” (Metsämuuronen, 2020a, p. 208).  

When it comes to detecting the ultimate IDP, two widely used classical estimators of IDP, item–total correlation (
gX , 

Rit; based on Pearson, 1896) and item–rest correlation (
gP , Rir; Henrysson, 1963), are not strong; they cannot reach 

the ultimate value 1XY   because of the mismatch of the dimensions of the item and the score, and the 

underestimation of IDP may be drastic if the item difficulty is extreme (e.g. Metsämuuronen, 2016; 2017a; 2020a; 
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2020b). Two other estimators of IDP, bi- and polyserial correlation coefficients, by using standard procedures of 
estimation (see Drasgow, 1986), tend to give obvious overestimates (out-of-range values) when 

gX  and item variance 

are high (e.g. Lord & Novick, 1968). This is specifically true with the deterministic patterns with non-normal or even 
distribution in the score (see more recent literature and examples in Metsämuuronen, 2020a; 2020b). Also one of the 
superior alternatives to 

gX  and 
gP , polychoric correlation (Pearson, 1900; 1913), cannot reach the ultimate IDP by 

using standard procedures of estimation because of the technical reasons.  In the deterministic patterns, one of the 
“superior alternatives” to 

gX , Somers’ D (Somers, 1962; see Metsämuuronen, 2020a), reaches correctly the values +1 

and −1, it is stable with extreme values (Newson, 2002), and it gives estimates for IDP that are remarkably closer the  
real IDP than Rit and Rir (Metsämuuronen, 2020a). These are advances in the practical educational testing settings, 
when the sample sizes may be small and the normality in the score cannot be ensured (see examples in Aslan & Aybek, 
2019; Delil & Ozcan, 2019). Hence, the characteristics of Somers’ D are worth of studying in measurement modeling 
settings.  

Statistical model latent to Somers’ D 

Assume two ordinal observed variables g (item) and X (score) that have r and s distinctive categories, respectively. 

Within the measurement modelling settings, the observed values gi and xj are driven by a continuous latent variable   

common to both variables. The threshold values of   for each category in g are denoted by 
i and in  X by j . Then, the 

variable g is related to    so that g = g
i
, if 

1  i i     , i = 1, 2,…, R and X = xj, if  1   j j     , j = 1, 2, …, S as illustrated 

in Figure 1. We define that  
0 0    and 

R S    ,  and we assume that 
1 i rg g g   and 

1 j sx x x  . 

 

 

Figure 1. A latent variable   categorized into two ordinal scales and the number of times the observation (gi, xj) is 

obtained in the sample (n
g X

.) 

From the traditional viewpoint of correlation coefficients related to the item analysis, the observed correlation between 
the interval-scaled variables g and X is item–total correlation (

gX ), the observed correlation between the binary g and 

ordinal X is rank-biserial correlation (
RB ), the inferred correlation between the latent   and observed X is polyserial 

correlation (
X ), and the inferred correlation between two latent variables is polychoric correlation (

 ). In the last, 

within the measurement modelling settings, we would expect to obtain perfect correlation, and the further 
  is from 

1, the more measurement error is included in the measurement instruments, including both items and the score. We 
note that the correlational viewpoint to the item discrimination is based on covariance between the item and the score. 

From the viewpoint relevant with this article, the family of Somers’ D, including Kendall’s tau-a and tau-b (Kendall, 
1938), and Goodman–Kruskal G (Goodman & Kruskal, 1954), item discrimination is approached from the probability 
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viewpoint. Somers’ D estimates the probability (π) that two randomly chosen pair of test-takers have the same order in 
both the item and score (see Van der Ark & Van Aert, 2015). The probability for the same order is   

1 1

R C

P rc ij ij

r c i r j c i r j c

   
     

 
  

 
       (1a) 

and the probability for the opposite order is  

1 1

R C

Q rc ij ij

r c i r j c i r j c

   
     

 
  

 
      (1b) 

The probabilities of tied pairs related to rows and columns are 
RT  and 

CT , respectively. The latent δ proportions the 

probabilities of P and Q with maximal possible number of pairs to the same direction (including also the tied pairs). 
Hence, the relevant direction related to the article, that is, the latent δ conditioned so that the column factor explains 
the row factor is defined as 

R

P Q

P Q T

 


  




 
.    (2) 

 
Somers’ D in the practical item analysis settings 

Somers’ D approximates the latent δ. The computational forms of Somers’ D are usually expressed by using the 
concepts of concordance and discordance between the values of g and X. By using the concepts of P and Q, the specific 

coefficient relevant to item analysis, D given g in condition of X, that is, Somers’  D g X †, has a simplified form of  

 
 

 2 2

1

2
R

i

i

P Q
D g X D

N n



 



     (3) 

where gin  is the number of cases in the categories g = i related to item g and 
,

ij ij

i j

P n N   and 
,

ij ij

i j

Q n N 

(Metsämuuronen, 2017b; Siegel & Castellan, 1988; note that, in the literature related to Somers’ D, this is notated as 

 D X g ). 
ijN  refers to the number of pairs in the cells below and to the right of the cell nij. Correspondingly, 

ijN  refers 

to the number of pairs in the cells below and to the left of the cell nij. The form is simplified because the values of P and 
Q are calculated only in one direction; more complicated form related to Eqs. (1) and (2) is seen in Section “Asymptotic 
sampling variance and standard error”. The statistical properties of Somers’ D have been discussed, for example, by 
Agresti (2010), Newson (2002; 2006; 2008) and Siegel and Castellan (1988), and practical procedures, for example, by 
Metsämuuronen (2017b).  

Because of Eq. (3), Somers’  D g X   tells the proportion of the logically ordered test-takers in the item after the cases 

are ordered by the score. This fits well with the definition by Metsämuuronen (2020a) related to IDP. As does the 

correlation coefficient,  D g X varies between –1 and +1. In the item analysis settings, the value  D g X = +1 

indicates the positive deterministic pattern: after ordered by the score, all the test-takers in the higher-ranked 

subsample(s) j in the item are (correctly) ranked higher than those in the lower subsample(s) i. The value  D g X = –

1 indicates the ultimately pathological situation that all the cases in the lower subsample(s) i would be ranked higher 

than those in the higher subsample j. The value  D g X = 0 refers to a situation that the number of correctly ordered 

                                                        
† It is good to note the seemingly confusing notation related to Somers’ D pointed by Metsämuuronen (2020a). In the traditional settings of 

conditions, the direction of condition  g X  usually means “g in condition of X”, that is, “g is dependent on X”, that is “g dependent”. However, within 

the notation related to Somers’ D,  D X g  is called “g dependent” (see Metsämuuronen, 2017b; Newson, 2002; 2006; 2008; Siegel & Castellan, 

1988). In this article, the specific notation  D g X  refers to “g dependent” which, in the outputs of some generally known software packages such as 

IBM SPSS as well as R libraries, would be called “score dependent”. See the practical notes of this notation in relation to the estimates in 
Metsämuuronen (2020a).  
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(“concordant”) test-takers  equals the incorrectly ordered (“discordant”) test-takers and, hence, the item cannot 
discriminate the test-takers from each other at all. Basically, the interpretation in the magnitude of the estimates by

 D g X is the same as that in
gX with the note that, in real-life datasets, 

gX cannot reach perfect +1 or –1 while 

 D g X can.  

By using a comparison with real-life items, Metsämuuronen (2020a) showed that Somers’  D g X , (D henceforward), 

would be a good alternative for the generally used classical estimators of IDP. This is specifically true with binary items 

in relation with 
gX  and 

gP  as well as the family of bi- and polyserial correlations (
BS , 

PS ) and the polychoric 

correlation coefficient (
PC ) (Pearson, 1900; 1913). In comparison with gX  and gP , D underestimates IDP less and 

is stable also with the items with extreme difficulty, which 
gX  and 

gP  may radically underestimate the IDP of. In 

comparison with 
BS  and 

PS , D does not give obvious overestimates nor obvious underestimates as 
BS  and 

PS  may 

easily give. In comparison with 
PC , D relates with the known composite of items and score, and this information can 

be used in further analysis while 
PC  refers to an unknown, unreachable, and hypothetical composites that are difficult 

to use in the analysis. In comparison with some other directional coefficients such as Goodman‒Kruskal lambda and tau 
(Goodman & Kruskal, 1954) or Pearson’s eta coefficient ( ) (Pearson, 1903, 1905), D can detect the ultimate 

discrimination in the item while lambda, tau, and eta can detect the ultimate discrimination in the score. 
(Metsämuuronen, 2020a.)  

Although D seems to be a “superior alternative” for 
gX  and 

gP  in the binary case, in the comparison by 

Metsämuuronen (2020a), D appeared to face a major practical challenge relevant to polytomous items. Although D 
reaches the ultimate values of IDP accurately, the estimates underestimate the IDP in an obvious manner when the 
number of categories in the marginal distribution of the item exceeds three and when the discrimination is not perfect 
or near perfect (Metsämuuronen, 2020a; see also Goktas & Isci; 2011; Newson, 2002). This is elaborated in what 
follows. 

Underestimation in D in the empirical datasets  

Metsämuuronen (2020a) noted the obvious patterns of underestimation in D with real-world datasets. The 
underestimation is strictly related to the number of categories in the items scale, that is, to the degrees of freedom of 
the marginal distribution of the item (df(g) = r – 1). When the number of marginal categories in the item exceeds three 
(df(g) > 2), 

gX  appears to be superior to D reflecting IDP (Figure 2). 

 

 
Figure 2. Underestimation in D in relation with gX  (R) as a function of df(g) and 1/df(g) 

 

The right-hand side graph in Figure 2 illustrates a practical peculiarity embedded in 
gX  as well as in all estimators of 

IDP in item analysis settings, that the estimate approximates perfect 1 the less there are items in the test and the more 
there are categories in the items. The phenomenon is obvious when we recall that, in the measurement modeling 
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settings, the latent variable θ is common for both the item and the score (see Figure 1), and that the association of item 
g and score X is determined mechanically because the score is a compound of the items. The latter was the reason why 
Henrysson (1963) suggested his procedure (Rir); 

gX is characterized as “spuriously” inflated (e.g., Cureton, 1966, p. 

93; Howard & Forehand, 1962, p. 731; Wolf, 1967, p. 21). When we think about a “test” with only one item: the 
correlation between the item and the “score” formed by this item, would be, obviously, perfect 1gX D   . 

Correspondingly, the more we have items comprising the test score the further Pearson correlation between a single 
item and the score tends to deviate from 1 even if the score would explain perfectly the behavior in the item. Obviously, 
this phenomenon of approaching the value 1 does not make sense outside the measurement modeling settings but, in 
what follows, this plays a significant role in deriving the dimension correction to Somers’ D. 

Underestimation in Somers’ D with polytomous items from the theoretical viewpoint  

Although D underestimates IDP in obvious manner, the interpretation of the matter is somewhat challenging because 
PMC and D tell about different information of the relation of the item and the score discussed above. While   indicates 

covariation between the item and score, D indicates probability that two randomly chosen test-takers have the same 
order in both the item and score or the proportion of logically ordered test-takers in the item after they are ordered by 
the score.  Anyhow, underestimation in D in relation to 

gX is expected because of Greiner’s relation (Greiner, 1909) 

related to the connection of Kendall Tau-a, Somers’ D, and Pearson correlation discussed by Kendall (1949) and 
Newson (2002). Assuming two independent variables X and Y with continuous scales (implying no ties) sampled from a 
bivariate normal distribution, Kendall Tau-a equals Somers’ D. Then, Greiner’s relation gives the association between D 

and 
XY as: 

sin
2

XY D



 

  
 

.     (4) 

From Eq. (4) we know that the values by D of 0, 1 3 , 1 2 , and 1  correspond to the values by
XY  of 0, 1 2 , 

1 2 , and 1 , respectively (see Figure 3). Then, in the case of two normally distributed continuous variables, except 

for the extreme values 1  and 0, the magnitude of 
XY  is greater than that of D. Consequently, because of Eq. (4), and 

because 
gX  always underestimates association, the estimates by D are expected to underestimate IDP more than 

gX  

when the estimate by D differs from 0 and 1  and the number of marginal categories in the item is high.  
 

 

Figure 3. Relation of Pearson correlation (RXY) and Somers’ D with continuous variables X and Y 

Because of the obvious disadvantage in D with the polytomous items to underestimate IDP even more than 
gX , 

Metsämuuronen (2020a) suggests that a “dimension-corrected Somers’ D” could be worth of deriving. While D is a 
“superior alternative” to 

gX  and 
gP  in binary datasets, “dimension-corrected D” could be a “superior alternative” in 

the polytomous cases. As far it is known, such correction has not been proposed yet. The aim of the article is to derive a 
dimension-corrected version of D for the measurement modelling settings to reduce the obvious underestimation 
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obtained by D in the polytomous datasets.  

Research questions 

This article derives a dimension-correction version of D for the item analysis settings. After the derivation, the 
following questions are asked: 

1) What are the general characteristics of the new coefficient in comparison with 
gX , 

gP , 
BS , 

PS , and
PC ? 

2) What is the sampling variance and standard error of the new coefficient? 
3) To what extent the new coefficient produces obvious underestimates? 
4) To what extent the new coefficient produces obvious overestimates? 

Methodology 

Research design 

The course of the study starts by deriving a “dimension-corrected D”. This is done by modelling the error in D in 1,296 
datasets with different number of test-takers (N), test lengths (k), difficulty levels ( p ), reliabilities ( ), and degrees of 

freedom in the item df(g) = r – 1, and in the score df(X) = s – 1. The datasets and items are presented in the next section. 

After the derivation of the new coefficient, the asymptotic sampling variance and standard error are derived and a 
numerical example of the use of the coefficient is given with the comparison with the relevant benchmark coefficients. 

The general characteristics of the new coefficient including the behavior in the extreme datasets, its limits as well as the 
potential over- and underestimation estimation are studied. 

Finally, the advantages, limitations and possible ways to utilize the coefficient are discussed and suggestions for the 
further studies are given. 

Datasets used in the derivation  

The dimension correction to D is derived by using 13,392 real-world items from 1,296 datasets and the knowledge of 
the pattern of underestimation related to df(g) illustrated in Figure 2. The datasets used in the derivation are formed by 
different combinations of randomly selected test-takers from a national-level dataset of 4,000 test-takers of a 
mathematics test for grade 9 with 30 binary items (Finnish Education Evaluation Centre [FINEEC], 2018). The difficulty 
levels of the items in the original dataset ranged from 0.24 < p < 0.95 with the average difficulty level of p  = 0.63, the 

item discrimination ranged from 0.332 0.627gX   with the average 0.481gX  ,  and the lower bound for the 

reliability was α = 0.885 and, if using the maximal reliability, 0.895MAX  . By forming different combinations of single 

items and their compilations, the original real-life datasets (87%) and some artificial datasets (13% of tests)—to cover 
the very difficult and extremely difficult tests—were used to prepare 1,296 tests with variating N (50–100–200), k (2–

30), p  (0.08–0.96), df(g) (1–15),  df(X) (12–27), and α (0.74–0,98). Forming of the dataset in the derivation is 

described in Metsämuuronen (2020a). 

Table 1 shows the essential characteristics of the tests in the derivation. Notably, the comparatively high reliabilities of 
the tests with difficult and extremely difficult items (0.901–0.956) reflect the fact that the artificial datasets appeared to 
produce notably higher item‒total correlations in comparison with the real-world datasets. This matter and its effects 
are discussed in Section “Main limitations of the new coefficient and the process used in derivation”.  

These 1,296 tests produced 13,392 items with varying item characteristics (Table 2). Notably, due to the process of 
forming the datasets (see Appendix), the number of items with the small degrees of freedom in the item scale (df(g ) < 
4) are counted in thousands while the number of items with high degrees of freedom (df(g ) > 10) are counted in tens. 

Data analysis 

The data manipulation was done in IBM SPSS 25 environment. The data mining tool, Decision Tree Analysis (DTA) and 
related CHAID algorithm (Kass, 1980; IBM, 2011), were used in seeking the cut-offs of the variables that explained the 
obvious underestimation for dimension-corrected D. Manual calculations were done by using a standard spreadsheet 
software. 
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Table 1. Selected characteristics of 1,296 tests used in the process 

Average item 
difficulty ( p ) 

n. of 
datasets 

Nature of  
datasets 

Average 

gX  
Average 

R  
0 – 0.299 47 Artificial 0.867 0.901 
0.3 – 0.399 112 Mainly Artificial 0.869 0.927 
0.4 – 0.499 57 Mainly Real-world 0.902 0.956 
0.5 – 0.599 142 Real-world 0.818 0.833 
0.6 – 0.699 721 Real-world 0.821 0.867 
0.7 – 0.799 217 Real-world 0.822 0.863 
Total 1,296  0.830 0.873 

 

Table 2. Selected characteristics of 13,392 items used in the process 

df(g) Number 
of items 

Average 
Rit 

Average 
Rir 

Average 
D 

Average 

BS  and 
PS  

Average 

PC 1 
Number of 
items for 

PC  

1 7131 0.5063 0.4440 0.6284 0.6703 0.6551 2852 
2 2715 0.6463 0.5658 0.6698 0.7471 0.7290 1080 
3 1233 0.7266 0.6353 0.7035 0.8020 0.7781 494 
4 658 0.7876 0.6818 0.7369 0.8490 0.8253 260 
5 415 0.8230 0.7101 0.7535 0.8717 0.8496 169 
6 335 0.8569 0.7456 0.7779 0.9044 0.8766 131 
7 234 0.8832 0.7535 0.7996 0.9258 0.8959 97 
8 123 0.9032 0.7697 0.8150 0.9467 0.9109 52 
9 165 0.9197 0.7747 0.8363 0.9583 0.9277 62 
10 140 0.9319 0.7623 0.8479 0.9667 0.9388 53 
11 93 0.9427 0.7819 0.8606 0.9785 0.9471 37 
12 74 0.9494 0.8062 0.8670 0.9878 0.9543 35 
13–15 76 0.9488 0.7988 0.8637 0.9805 0.9537 32 
 13,392      5,354 

The dataset of polychoric correlation coefficient comprises 5,354 items from 518 tests by balancing the item 
from the real-world and artificial datasets 

Principles underlying the modelling of the dimension-corrected D 

Based on our knowledge of the characteristics of D and 
gX  , underlying the process of deriving the correction 

elements, four main notes (N) were made and four consecutive principles (P) were followed:  
 

N1. D gives a credible estimate of IDP when df(g) = 1 (Metsämuuronen, 2020a). 
P1. D should be corrected only when df(g) > 1. 
 

N2. 
gX  always underestimates IDP in item analysis settings where ( ) ( )df g df X  (Metsämuuronen, 2016). 

P2. The estimate by the dimension-corrected D should be higher than that by 
gX  to overcome the nature of the 

obvious underestimation of IDP in 
gX . 

N3. D tends to underestimate IDP the more the higher is df(g) (Metsämuuronen, 2020a; Newson, 2002). 
P3. The correction should produce more correction the higher is the df(g). However, with the deterministic patterns 

the correction should reach the perfect value 1.  
 
N4. In real-life settings, D reaches the maximal value 1 while 

gX  does not (Metsämuuronen, 2016; 2020a; Newson, 

2002). 
P4. When D = 1, no correction is needed. Additionally, obviously, the dimension-corrected D should not exceed 1.  

 
Because there were no theoretical reasons or empirical evidence to assume that D would under- or overestimate IDP 
when df(g) = 1 (P1), the initial model of the expected non-underestimating value for D with the linear nature is based 
on the assumption that there is no need to correct the estimates in the dichotomous case. Both the assumptions of 
linearity of the non-underestimation and that the estimate by D would be true when df(g) = 1 are questionable and can 
be debated. All in all, we do not know whether the non-underestimation should be linear or curvilinear in nature. In the 
deterministically discriminating dichotomous dataset with an evenly distributed score, the underestimation is elliptic 



304  METSÄMUURONEN / Dimension-Corrected Somers’ D 
 

in nature (see Eq. 26 in “Potential overestimation in D2” below). From Greiner’s relation (Eq. 4) we know that, in some 
cases, it is a trigonometric function. Here the linear option is selected because of its simplicity. 

Results 

Modelling the dimension-corrected D 

The dimension-corrected Somers’ D, later called D2, is based on modeling the underestimation in 13,392 empirical 
values of D. Figure 4 illustrates the starting point of the modeling (cf. Figure 2). The dataset suggests that the model 

with cubic nature      
3 2

1.02 2.01 1.32 0.95df g df g df g     explains the observed distribution of D by 1/df(g) 

reasonably well (Figure 4). However, the model is somewhat misleading because the polynomial curve should go 
through the points (1/df(g) = 0, D = 1) and (1/df(g) = 1, D = 0.6284). The first point obviously indicates that, with 
indefinitely many categories in the item with maximal discrimination, D should reach the value 1 in the same manner as 
the other coefficients would do. The second point refers to the expectation of the level when df(g) = 1. 
 
 

 

Figure 4. The original model of Somers’ D and initial models D20 and D21 

The correction in D is based on combining the corrected third-degree model of the observed average levels of D against 

1 ( )df g  (D20, Eq. 5) and a linear model of the expected levels in varying 1 ( )df g  (D21, Eq. 6). The corrected model D20 

of third grade passing through the points (1/df(g) = 0, D = 1) and (1/df(g) = 1, D = 0.6284) is:  

 

     

       

     
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2
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1
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1
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1 1

D
df g df g df g

df g df g df g df g

df g df g df g

   

 
     

 
 

 
     

 

   (5) 

 
where 0.3716 = 1 – 0.6284.  

The magnitude of the underestimation is unknown. For the modeling purposes, the “correct” level of D (D21) was set to 
be linear through the points (1/df(g) = 0, D = 1) and (1/df(g) = 1, D = 0.6284) (see Figure 4). This theoretical level of D 
in each df(g) is 

y = -1,0179x3 + 2,0096x2 - 1,3169x + 0,9542 

y = -1x3 + 2x2 - 1,3716x + 1 

y = -0,3716x + 1 
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 
21

0.3716
1D

df g
  .      (6)  

 
The average level of discrepancy between the theoretical level and the observed level at each level of df(g) is denoted 
by DE: 
 

       

   

21 20

2

2

 

0.3716 0.3716 1 1
1 1 1

1 1
1

ED D D

df g df g df g df g

df g df g

 

  
           

 
   

 

  (7) 

 
and, hence, the initial correction for D is 

   

2

22

1 1
1ED D D D

df g df g

 
      

 

.    (8) 

 
The initial model D22 (Eq. 8) appears to be surprisingly good when it comes to increasing the average level of D. 
However, this model increases the magnitude of the estimates too high when D is very high in the beginning; all 
estimates exceeding the limits of association are of 0.830D  . Hence, in the second phase, a switch (1 − D) related to the 

principle P4 was added to the correction factor DE:  1– ED D . This switch turns the correction off in the case of 

ultimate item discrimination when no correction is needed. An additional switch   1df g   is needed to restrict the 

effect of  1 D  only on items with df(g) > 1. After these, a possible correction factor could be     1 1– Edf g D D   . 

The final suggestion as the dimension-corrected Somers’ D is, then, 

 
  
   

2

2

1 1
1 1

df g
D D D

df g df g

  
      

 

.    (9) 

 
By using light algebra, Eq. (9) can be further modified into  
 

   2 1 1 1D D A          (10) 

  
where D refers to Somers’ D (g|X) and  

 

   

2

1 1
1

df g
A

df g df g

 
   

 

    (11) 

 
The correction in Eq. (10) is relevant to the positive values of D. Because of the symmetricity in Somers’ D, a more 
general form of D2, comprising also the negative values of D, is 
 

     2 ( ) 1 1 1D sign D abs D A      ,   (12) 

 
that is, we first form the dimension correction for the absolute value of D as in Eq. (10) and then, if the original D is 
negative, we give the negative sign to the outcome. D2 appears to be very potential and its characteristics are studied in 
what follows.  
 

Asymptotic sampling variance and standard error of D2 

Because the statistical properties of Somers’ D are well documented (e.g. Agresti, 2010; Newson, 2002, 2006, 2008; 
Siegel & Castellan, 1988) the behavior of D2 is known in the case of df(g) = 1. In the dichotomous case, the asymptotic 
sampling variance of D2 can be approximated as  
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     
2

2
2 2

4
,

4
D D ij r ij ij i

i jr

n D C D P Q N n
D

         (13) 

 

that leads to asymptotic standard error  
 

     
2

2 2
,

2
( 1) ( 1) ij r ij ij i

i jr

ASE D ASE D n D C D P Q N n
D

       (14) 

 

and, under the hypotheses of independent variables,  
 

   
2 2

2

,

2 1
( 0) ( 0) ij ij ij

i jr

ASE D ASE D n C D P Q
D N

       (15) 

 

where nij is the number of cases in the cell i,j, and ni is the number of test-takers in the row category i, and 

 2 2

1

r

r i

i

D N n


    

ij hk hk

h i k j h i k j

C n n
   

     

ij hk hk

h i k j h i k j

D n n
   

     

,

ij ij

i j

P n C   

,

ij ij

i j

Q n D .     (16) 

Note that the formulae (13) to (16) use double than “usual” size of magnitude for P and Q seen in Eq. (3). These 
calculations are somewhat laborious manually. Somers (1980) offers a short-cut method found also in Siegel & 
Castellan (1988) and Metsämuuronen (2017b): 

  2

2 2

2 2

4 1 1

9 ( 1)
D D

r s

Nr s
 

 
 


    (17) 

that leads to asymptotic standard error  
 

  2

2 2

4 1 1
( 1) ( 1)

9 ( 1)

r s
ASE D ASE D

Nr s

 
 


.  (18) 

 

Notably, the simplified approximation of sampling variance depends only on the dimensions of the variables. Hence, for 
all combinations of response patterns with the identical dimensions in the crosstabulation, sampling variance and 
related sampling error are identical.  

To deriving the corresponding sampling variance for the case of df(g) > 1, we remember that, because of Eqs. (10), (12), 
and (11), after simplified, 

        2

2 constant constantVAR D VAR D VAR D    .   (19) 

Then, by using the basic laws of variance, we get 
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    (20) 

where A is as in Eq. (11). Then, 
 

     
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
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and, under the hypotheses of independent variables,  
 



   International Journal of Educational Methodology  307 
 

   
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i jr

A
ASE D A ASE D n C D P Q

D N


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and, if using the simplified short-cut by Somers (1980), 

   
22

2 2

4 1 1 1
( 1)

9 ( 1)

r s A
ASE D

Nr s

  



   (23) 

 

Notably, the element  
2

1 1A   always and, hence, the sampling variance and standard error of the estimates by D2 are 

always smaller than those by Somers’ D. When testing the null hypothesis 
0 2: 0H D   (which is usually not a relevant 

option in the item analysis settings though), we can use the statistic 
 

2

2( 0)

D
z

ASE D
 .     (24) 

 

This value is approximately normally distributed with mean 0 and standard deviation 1 when the null hypothesis is 
true.  
 

A numerical example of D2 

As a numerical example of calculating D2, assume a simple polytomous dataset with N = 25 cases as in Table 3 adapted 
from Cox (1974, p. 177) and Drasgow (1986, p. 70). Let us assume that the dataset would concern an item g and the 
score X.  

Table 3. A hypothetic dataset (Cox, 1974; Drasgow, 1986) 

 
 
 
 

 
 
 

Used by permisson of Biometric society 

Table 4. Contingency table based in Table 3 

  X 
  69 72 77 78 80 81 85 86 87 88 92 93 96 99 101 103 104 108 112 SUM (gi) 
g 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 3 

1 1 1 1 1 1 1 0 1 1 1 2 1 0 1 1 0 2 1 0 17 
2 0 0 0 0 0 0 1 0 0 0  0 2 0 0 1 1 0 0 5 

 SUM (Xj) 1 2 1 1 1 1 1 1 1 2 2 1 2 1 1 1 3 1 1 25 

 
In the first phase, Somers’ D is calculated. For this, a cross-table is formed (Table 4). For the manual calculation of 
Somers’ D, the sums of concordant pairs (P) and discordant pairs (Q) are formed (see Siegel & Castellan, 1988; 
Metsämuuronen, 2017b). For these, the cell frequencies are denoted by nij. For the concordant pairs, we calculate how 

many cases are there in the cells below and to the right of the cell nij. These are denoted by 
ijN  . Correspondingly, the 

discordant pairs denoted by 
ijN   are found in the cells below and to the left of the cell nij. All possible values for 

ijN   and 

ijN   are computed and these are multiplied by the related nij. The number of all the pairs in the same direction is 

  

1 20 1 12 6 5 6 4 2 2 90ij ij

ij

P n N             . 

Correspondingly, the number of the pairs in the opposite direction is  
 

1 1 1 9 1 22 6 1 2 3 2 4 1 5 57ij ij

ij

Q n N                 . 

g X  g X  g X  g X  g X 
0 72  1 77  1 87  1 99  2 85 
0 88  1 78  1 88  1 101  2 96 
0 112  1 80  1 92  1 104  2 96 
1 69  1 81  1 92  1 104  2 103 
1 72  1 86  1 93  1 108  2 104 
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By using Eq. (3), the estimate of the association by Somers’ D(“score dependent”), that is, D(“g in condition of X”)‡ is  
 

 
 

 

 

 2 2 2 2
2 2

1

2 2 90 57 66ˆ 0.219
30225 3 17 5
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P Q
D g X

N n


  
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

. 

For the dimension correction, we need the correction factor A (Eq. 11). With three categories in the item scale, df(g) = 2 
and, hence, 

 

   

2

1 1 1 1
1 0.125

2 4

df g
A

df g df g

 
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 

. 

 

Because of Eq. (10), the estimate of the observed association of the item and score by D2 is 
 

       2
ˆ 1 1 1 1 0.219 1 0.125 1 0.317D D A            

 

with standard error  
 

        2

2
ˆ( 1) ( 1) ( 1) 0.875 0.242 0.212ASE D A ASE D      . 

 

As benchmarks, the estimates of the observed association based on the mechanics of Pearson’s product-moment 
correlation are ˆ 0.185gX   and, after corrected for the inflation, ˆ 0.139gP  . The estimate of the inferred association 

by polyserial correlation is ˆ 0.216PS   and the corresponding estimate by the polychoric correlation is ˆ 0.123PC   

though the last value depends of the estimation method in some extent.  

General characteristics of D2 

D2 behaves according to the four principles set for the correction. First, the estimates by D are not corrected when df(g) 

= 1. Second, the estimates by D2 tend to be, generally, higher than those by 
gX , 

gP , and 
PC , and close to those by 

PS , 

although without the obvious overestimation (see Figures 5 and 6). Third, the higher is df(g) the greater the correction 
is in D2. Fourth, D2 does not correct D when item discrimination is deterministic and D = 1. Of the 13,392 items on the 
simulation, none showed a value that was out of range regarding the limits of correlation. 
  

 

Figure 5. Average estimates of selected indices of IDP by varying df(g) 
 
 

                                                        
‡ Again, it is worth noting the specific wording when it comes to textbooks and outputs related to Somers’ D. All the generally known textbooks and 
software packages use the term “score dependent” for this formula. However, it tells us how well the item discriminates the test-takers after they are 
ordered by the score, that is, the order in the item depends on the order in the score. 
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Figure 6. Distributions of the estimates by 
gX (RgX), 

gP (RgP), 
BS (RBS), 

PS (RPS), original D, and D2 by varying df(g) 

 

Overall, when it comes to correcting the underestimation in D, D2 behave logically at all levels of df(g) used in the 

simulation. On average, D2 underestimates the IDP remarkably less than Somers’ D, and notably less than 
gX  and 

PC  

as was the motivation for the derivation. We may also note that the average magnitudes of the estimates by D2 tend to 

follow those of 
PC  when df(g) < 3—as was the case in the numerical example with Table 3. Notably, however, in the 

simulation dataset, 
PC  tends to start to follow the magnitude of 

gX  when df(g) > 6. This indicates that 
PC  tends to 

start to underestimate the IDP the same way
gX does with high degrees of freedom in the item. To some extent, the 

average magnitudes of the estimates by D2 tends to follow those by 
PS , although without the obvious overestimation 

(see Figure 6). Notably, the variability in the magnitudes of the estimates by D2 is smaller than that by D at each level of 
df(g) > 1 (Figure 6).  

Limits of D2 

When df(g) = 1,  
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and, then,   
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     2 1 1 1 1 0 1 1D D A A          .     

The limit of degrees of freedom related to D2 reflects the peculiarity of the magnitudes of the estimates of IDP as 
discussed above. It is worth noting that the dimension-corrected coefficient is created for the case that the degrees of 
freedoms of two variables are far from each other. In the theoretical extreme case when df(g) = ∞, that is, with the 
continuous items and infinite number of test takers with different item score (to form infinite number of categories in 
the item), 

 

   

2

2
1 1

lim lim 1 1 1 1
df g

A
df g df g

 
      

 

   (25) 

and, then, the correction in Eq. (10) leads us to a triviality that    2 1 1 1 1D D A       seemingly regardless the actual 

association between the item and the score. However, the indefinitely long “parallel tests” approximates the ultimate 

magnitude of 
gX = D2 = 1. Hence, within the item analysis settings, with the indefinitely many categories in the item(s), 

the score would contain also indefinite number of categories and, then, D approximates the magnitude of 1. However, 
Eq. (25) hints that when two continuous variables with different scales are independent from each other, another kind 
of correction than Eqs. (10) and (12) may be needed. This restriction of D2 is necessary to keep in mind if applying it to 
items with continuous scale with infinite number of categories. However, we may remember, that the continuous scale 
itself alone does not lead to triviality of D2 = 1 because, even with the continuous values in the scales, the number of 
categories in the item may be small and then, obviously, df(g) << ∞. This matter is relevant in relation to the 
measurement modelling settings where the items may be weighted by a factor loading. Regardless the seemingly 
continuous scale, the actual weighting of, for example, binary items leads to two categories; now instead of categories 0 
and 1, we may have categories 0 and 0.678, as an example. Another viewpoint to this restriction of using D2 is that the 
contemporary procedures related to item analysis are usually related to non-continuous scales in the item. Hence, the 
condition of df(g) = ∞ is a highly theoretical option and does not relate with the real-life item analysis settings as we 
face those today. 

Obvious underestimation in D2 

A simple criterion for the obvious underestimation in the estimates by D2 is whether the magnitudes of the estimates 
are lower than those by

gX . Knowing that the estimate by 
gX  is practically always an underestimate for IDP, lower 

values would strictly be indicative of even more underestimation in D2. Of the 7,131 items on the simulation with df(g) 
= 1, the original D (= D2) included 12 cases (0.1%) where 

gX  > D. All these cases came from the artificial datasets with 

relatively high value of 
gX  (see Table 5).  

Table 5. Selected characteristics of the factors explaining the obvious underestimation in the different options for 
dimension-corrected D 

Factor Cut-off1 2gX D   (n = 36) 
2gX D   (%) 

Type of the dataset artificial 36 100 

gX  > 0.853 20 55.6 

D > 0.830 16 44.4 
Number of items in the test (k) 2 or 3 13 36.1 

df(g) 9–13 11 30.6 
The groups and cut-offs were suggested by Decision Tree Analysis (DTA; IBM, 2011). Each factor 
was analyzed individually by using CHAID algorithm (Kass, 1980) without further restrictions. 

 
When df(g) > 1, additionally, we find 36 additional estimates (0.3%) by D2, where the magnitude of the estimate by

gX  

is higher than that by D2. All these obvious underestimates by D2 (0.4% of the estimates) come from the artificial 
dataset with an artificial combination of high item discrimination and low item difficulty. As a benchmark, with the 
original Somers’ D when df(g) > 1, as many as 62% of the estimates in the simulation datasets are obviously 
underestimated. Hence, the number of the clearly underestimated estimates by D2 seems relatively low. Some of the 
characteristics of the obvious underestimates are collected in Table 5. It seems that the probability of obtaining obvious 
underestimation in real-life datasets is very low when using D2.  

Potential overestimation in D2 

If the magnitude of the estimates by D2 would be higher than 1, those would be obvious overestimates. In the 
simulation, none of the items showed this behavior. Otherwise, possible overestimation

 
is not easy to evaluate in strict 

terms when using real-world datasets. One potential criterion for the overestimation in these cases is the theoretical, 
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maximally discriminating Guttman-patterned datasets (Guttman, 1950). In the Guttman pattern, with df(g) = 1, D gives 
the maximal estimate 1 while the estimates by

gX  are always smaller than 1; the maximal
gX is reached when p = 0.5. 

Assuming a score without ties, the highest value of item–total correlation approximates max 0.866gX   (see 

Metsämuuronen, 2016) and, hence, the lowest point of the difference is 1 0.866 0.134gXD     . This boundary is 

illustrated in Figure 7.  
 
 

 
 

Figure 7. Guttman-pattern as a limit for the possible overestimation 
 
In the binary case, Guttman boundary follows an ellipse with the parameters x0 = 0.5, y0 = 0, a = 0.5 and b = max 0.866gX  : 

       
22 2 2

0 0

2 2 2 2

00.5
1

0.5 0.866

gXX x Y y p

a b

   
      (26) 

 
where p is the item difficulty and 0.866 refers to the limit of the maximum value of Pearson correlation in the 
deterministic pattern in the dataset. From (26) we solve

gX :  

 

 
2

2

2

0.5
1 0.866

0.5
gX

p


 
   
 
 

    (27) 

 
and, then, in Guttman-patterned items, 

 
2

2

2

0.5
1 1 0.866

0.5
gX

p
D 

 
     
 
 

   (28) 

 
This model is used as a rough tool to evaluate the possible overestimation in D2 (Figure 8). In the real-world datasets in 
the simulation, 18 out of 13,392 estimates by Somers’ D (0.13%) exceeded this limit, and, in the artificial datasets, 33 
(0.25% of all items). In all these cases, the magnitude of the overestimation is nominal (near zero units of correlation). 
Notably, in comparison with the original D, D2 produced only one additional estimate with non-significant magnitude 
that exceeded the boundary of the Guttman pattern.  
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Figure 8. Possible overestimation and obvious underestimation in D and D2 

Conclusions 

A dataset of 13,392 real-life items with varying characteristics was used to model the underestimation in D and to 
derive the “dimension-corrected Somers’ D” for the measurement modelling settings. In its general form, the new 

coefficient is      2 ( ) 1 1 1D sign D abs D A       where D is the uncorrected Somers’  D g X  (i.e. “item in condition 

of score” or “score dependent” in the standard outputs of the software packages) and  

   

2

1 1
1

df g
A

df g df g

 
   

 

 

where df(g) is the number of marginal categories in the item minus 1. Within the normal range of non-pathological item 

discrimination, that is, with positive association between the item and score,    2 1 1 1D D A     . 

D2 equals Somers’ D in two cases: when df(g) = 1, that is, in binary datasets, and when D = 1 , that is, with 
deterministic item discrimination. As do all the classical estimators of IDP, D2 approaches the value D2 = 1 when the 
number of categories in the item scale approximates the scale of the score. Additionally, in a highly theoretical case of 
infinite number of categories in the item (and, consequently, in the score), D2 approximates D2 = 1 seemingly regardless 
the actual value of Somers’ D. Under this condition, however, also D2 (as well as all estimators of IDP because of the 
mechanical connection between the items and the score) approximates 1.  

In the datasets in the simulation, D2 showed very few cases of obvious underestimation and overestimation. The 
correction is simple but seems to get an effective result. With certain restrictions discussed in the section “Main 
limitations of the new coefficient and the process used in derivation”, D2 seems to be superior over other indices in 
comparison not only in binary cases but also in cases where the degrees of freedom increase up to 15 categories; more 
categories were not used in the simulation. 
 
Overall, D2 corrects the underestimation in D effectively and hence, in most cases, the magnitude of the estimates 
expectedly draws us nearer the real IDP that those by 

gX . The number of obvious cases of underestimation by D2 is 

reduced remarkably in comparison to the original Somers’ D—from 62% to 0.3% of the estimates with df(g) > 1. . In 
most of these obvious underestimations, the magnitude was close to zero units of the correlation. The number of 
estimates with a possible overestimation did not increase when the boundary of the deterministically discriminating 
Guttman pattern was kept as the criterion. The possible overestimation in the dimension-corrected D may need more 
studies though. Other limitations of the new coefficient are discussed in the section “Main limitations of the new 
coefficient and the process used in derivation”. 

Discussion 

Some advantages of D2  

Combining the advantages of Somers’ D from Metsämuuronen (2020a) and Newson (2002) as well as the empirical 
findings in this article, the dimension-corrected Somers’ D could be proposed as one of the  “superior alternatives” to 

gX  and 
gP  and, in some extent, also to 

BS , 
PS , and

PC in reflecting the IDP in item analysis settings because of the 
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following reasons: 
 
1. D2 reaches the values +1 and –1 accurately while 

gX  and 
gP  cannot reach the limits within practical 

measurement modeling settings, 
BS  and 

PS  may easily give obvious overestimates and underestimates, and 

PC  cannot reach the extreme value with standard procedures. Additionally, because the magnitude of the 

estimates by 
PC  tend to follow those by gX , the estimates seems to underestimate IDP when df(g) > 7. 

2. D2 is more robust for extreme observations and for nonlinearity than 
gX  and 

gP . 

3. D2 is superior to 
gX  and 

gP  and to some extent also to 
PC with both dichotomous and polytomous items, 

because it is highly probable that D2 produces an estimate that underestimates the IDP less than
gX , 

gP , and  
PC  

do. 

4. D2 does not produce out-of-range values as do 
BS  and 

PS . 

5. D2 utilizes the known composite of items in the analysis that is easy to use in further research while 
PC  refers to 

an unknown, unreachable, and hypothetical composite that is difficult to use. 
6. D2 is applicable and accurate with large, small, non-normal, or sparse cross-tables while the applicability and 

accuracy of the estimation result of the 
PC  depends on the form of cross-tabulation and normality of the 

phenomenon. 
7. D2 has a logical directional nature from the modern measurement–modeling viewpoint; while D2 indicates how 

well the latent trait (score) explains the behavior in the manifested variable (item), the other estimators in 

comparison (
gX , 

gP , 
BS , 

PS , and
PC ) tell us about the unspecified association of the variables. 

8. D2 increases the possibilities of detecting the maximally discriminating test items in comparison with 
gX , 

gP , 

BS , 
PS , and

PC . These kinds of datasets where the order of the test-takers in the item is the same as in the score 

are more frequent with small datasets relevant in, for example, classroom testing settings. In these patterns, unlike 

the other estimators,
2 1D   always irrespective of the number of cases, degrees of freedom of the item and the 

score, the number of tied values, difficulty levels in the items, or the number of items on the test.  
9. D2 is reasonably easy to calculate even manually in practical test settings such as classroom testing, while 

calculation of 
PC  requires specific software packages and complex procedures. 

Main limitations of the new coefficient and the process used in derivation 

One obvious challenge in generalizing the new coefficient is that D2 is developed for item analysis settings. In these 
settings, always df(g) << df(X), and the items and the score are mechanically connected. Notably, the dimension-
correction leads, automatically, to approximate the perfect value D2 = 1 (or, in the ultimate pathological case, to D2 = ‒1) 
when the item is a continuous one and the sample size is large. Because of this, the applicability of D2 may be reduced 
outside the measurement modeling settings. Hence, it is not wise to use D2 as a general coefficient without further 
studies and possible amendments. The coefficient is suitable for the negative values of D though, however, these are 
pathological cases in item analysis settings.  

Second, during the process, the benchmark of the possible underestimation was the Pearson’s product–moment 
correlation coefficient while, perhaps, some other coefficient would have been more appropriate. Anyhow, the 
correction seems to bring us nearer the true IDP also in comparison with other indices. More studies are needed in this 
respect. Specifically, from this viewpoint, an interesting benchmark would be a coefficient called r-polyreg correlation, 
that is, an r-polyserial estimated by regression correlation (Lewis et al., 2003 cited by Livinstone & Dorans, 2004). This 

coefficient, developed to overcome the challenge of obvious overestimation in 
BS  and 

PS , can be used with binary or 

polytomously scored items and it produces estimates that do not exceed 1, nor does it rely on bivariate normality 
assumptions (Moses, 2017). 

Third, the correction elements in 
2D  are based on simulation with empirical items that embed the limitations of the 

original datasets to a certain extent. We do not know how much the estimates depend on the original dataset. However, 
we note that there are no numerical sub-coefficients in the correction factors in Eqs. (10) and (11). Hence, to some 
extent, the new coefficient is free from the original dataset and the correction is more general than is the case when it 
includes specific numerical coefficient(s) strictly dependent on the underlying dataset. Seeing that the values arrived at 
are based on 13,392 items with varied characteristics and a strong base in the real world, the estimates are likely to be 
quite stable in relation to real-life settings of testing, although wider simulations may give more insights in the matter. 
Cross-validating the model by using datasets from the same basic population and same test items would not challenge 
the models profoundly. Specifically, such simulation where the degrees of freedom of the item are higher than seven 
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would enrich our knowledge of the coefficient; the dataset used in the simulation in this article contained few items of 
these kind. Also, simulations regarding the possible over and underestimation of association in general would benefit 
us. 

The fourth limitation is that dimension–correction is modeled for Somers’  D g X  and not for Somers’  D X g  or for 

symmetric D. Hence, the correction cannot necessarily be generalized though it may carry general elements for df(X) >> 

df(Y) or df(Y) >> df(X). From the measurement–modeling viewpoint, however, the direction  D g X  (“item in condition 

of score”) is more relevant than  D X g  (“score in condition of item”). In any case, generally, it would be valuable to 

study whether the correction elements developed in this study are valid also in the symmetric case and in the case of

 D X g . It may appear that when the degrees of freedoms of the variables are nearer each other we may need the 

degrees of freedom of both variables in the correction—now, only df(g) appeared to be significant factor in the 
correction.  

Some suggestions for the further studies 

One natural direction for the further studies is to study the new coefficient itself. First, larger simulations would 
confirm the characteristics of the new coefficient. While there is a need for a simulation with higher degrees of freedom 
than seven to see how much a small number of estimates affected the correction elements at this range, simulations are 
also needed to confirm or alter the coefficient in case the degrees of freedoms are close to each other.  

Second, being a new index of correlation related to item discrimination, it would be valuable to compare the 
characteristics of the new coefficient with some other, new, well-behaving coefficients, such as r-polyreg correlation.  

Third, being a new coefficient of association, its properties may be valuable to study from that viewpoint as well. We 
may also ask: does the coefficient carry the essential characteristics of Somers’ D at all or should it be taken as a totally 
new coefficient based on Somers’ D? 

Fourth direction for future research is to study the new coefficient in relation with other relevant aspects of 
measurement modeling. Then, the new coefficient may have relevance when estimating “dimension-corrected 
reliability” of the test score, for example. Item–total correlation, which always underestimates the connection of the 
score and the item, is embedded in all widely used estimators of reliability because, in the classical forms of reliability, 

the element 2

X  can be expressed by using gX : 

2

2

1

k

X g gX

g

  


 
  
 
 (Lord & Novick, 1968), where k refers to the 

number of items, booklets, or partitions of the test items. This matter concerns such classical estimators of reliability as 
Spearman–Brown prophesy formula (Brown, 1910; Spearman, 1910), Flanagan or Flanagan–Rulon formula (Flanagan, 
1937; Rulon, 1939), the family of Guttman’s Lambda (Guttman, 1945) as well as the classical formula KR20 by Kuder 
and Richardson (Kuder & Richardson, 1937), and its generalized version coefficient alpha (timewise Guttman, 1945; 

Gulliksen, 1950; Cronbach, 1951). As the magnitude of 
gX  is always lower than it should be, Metsämuuronen (2016) 

argued for that this mechanical underestimation is at least one of the reasons why the classical coefficients tend to 
underestimate reliability. We may note that item–total correlation is embedded also in the processes of calculating 
more advanced estimators of reliability based on factor analysis such as McDonald’s Omega (McDonald, 1999) and 
maximal reliability (e.g. Li, 1997; Raykov 2004; 2005 onwards) because factor loadings in orthogonal rotation are 
(Pearson) correlations between the (weighted) items and the (latent) factor. This means that the very essence of factor 
loading is item‒scale correlation. Perhaps D2 could be used instead of Pearson correlation (or some other estimator) in 
these formulae and procedures. This may lead us to correct the estimates obtained by the classical estimators such as 
coefficient alpha and maximal reliability and, hence, we can get nearer the real reliability than we can by using the 
traditional estimators or at least this can give us the “dimension-corrected reliability”. 

Fifth, the directional nature of the coefficient and its possible usefulness within the modern measurement modeling 
processes may be worth studying. The nondirectional Pearson product–moment correlation coefficient and the family 
of polychoric correlations are deeply set in the procedures in EFA and SEM analyses. A relevant underlying question 
that arises from the directional D2 and the underlying Somers’ D is why in the first place are we willing to use the 
nondirectional correlation coefficients in our testing and measurement modeling settings while the whole philosophy 
of measurement modeling is based on the idea of directionality the latent trait manifest as the score or the 
measurement scale determines the observed behavior and not the other way round (e.g. Byrne, 2001; Metsämuuronen, 
2017b): in psychometric theory, the overall trait being measured generally drives examinees’ responses to, and, thus, 
scores/measurement scales on individual items (see the discussion in Metsämuuronen, 2020a). Then, the family of the 
directional coefficients of correlation seems to be at least possible if not suggestible alternatives for measurement 
modeling. The directional, dimension-corrected correlation coefficient D2 could be a relevant option to consider from 
this point of view.  
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Overall, Somers’ D seems to be a very potential tool within measurement modeling settings because of its natural 
characteristic of directing the connection of two variables the same way as we find in the settings of structural equation 
modeling. With dimension-correction, D2 could be an even more useful tool in both item analysis settings and in 
measurement modeling. It may help us get closer to the real connection between the latent and manifest variables, real 
item discrimination, and real reliability. 
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