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Abstract: Although Goodman–Kruskal gamma (G) is used relatively rarely it has promising potential as a coefficient of association in 
educational settings.  Characteristics of G are studied in three sub-studies related to educational measurement settings. G appears to 
be unexpectedly appealing as an estimator of association between an item and a score because it strictly indicates the probability to 
get a correct answer in the test item given the score, and it accurately produces perfect latent association irrespective of 
distributions, degrees of freedom, number of tied pairs and tied values in the variables, or the difficulty levels in the items. However, 
it underestimates the association in an obvious manner when the number of categories in the item is more than four. Towards this, a 
dimension-corrected G (G2) is proposed and its characteristics are studied. Both G and G2 appear to be promising alternatives in 
measurement modelling settings, G with binary items and G2 with binary, polytomous and mixed datasets. 
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Introduction 

The family of gamma, delta, and tau 

Two approaches are mainly used in estimating the association between two variables: one based on probability that 
has a latent linear nature and one based on covariance that has a latent trigonometric nature. In the former approach, 
most commonly used measures of association come from the family that include Kendall’s tau-a and tau-b (Kendall, 
1938, 1948), Goodman–Kruskal gamma (G; Goodman & Kruskal, 1954), and Somers’ delta (D; Somers, 1962). In 
general, these coefficients estimate the probability that two randomly chosen respondents are in the same order in two 
variables (e.g., Van der Ark & Van Aert, 2015), or, in item analysis, they indicate what is the probability to obtain a 
correct answer in an item given a known score. The family of G and D also includes two other related measures, Kim’s 
dy.x (Kim, 1971) and Wilson’s e (1974) that are used, although rarely, for the same purpose as G and D (see Gonzalez & 
Nelson, 1996). Similarities of these coefficients are discussed later. 

G and D are used relatively less often than the ones based on covariance, for example, product–moment correlation 
coefficient (PMC; Bravais, 1844; Galton, 1989; Pearson, 1896), often called Pearson correlation or sometimes Bravais–
Pearson correlation (e.g., Cleff, 2017). However, this family of coefficients can be taken as the general case of many 
classic test statistics or those that are transformations of tau, G or D (see Newson, 2006). These include, among others, 
the sign test (Arbuthnott, 1710, see Conover, 1980; Metsämuuronen, 2017), the Gini index (Gini, 1912), the area under 
receiver operating characteristic (ROC) curve (AUC; e.g., Harrell, 2001; Heagerty & Zheng, 2005), Gehan–Breslow test 
(Breslow, 1970; Gehan, 1965) based on Wilcoxon W-test (Wilcoxon, 1945) and Kruskal–Wallis test (Kruskal & Wallis, 
1956), Harrell’s C index (Harrell et al., 1982), and Mann–Kendall trend test (Kendall, 1948; Mann, 1945). Also, the most 
popular nonparametric technique for estimating a linear trend (as described by El-Shaarawi & Piegorsch, 2001), Theil–
Sen estimator (Sen, 1963; Theil, 1950) also known as Theil median slope and Kendall–Theil robust line, is defined 
through Kendall’s tau-a, which can be thought of as a general case of G and D. Hence, the family of tau, G and D is an 
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interesting one from the viewpoint of multiple applications with a variety of options.  

G and D in educational settings 

In general, when two variables are measured on the ordinal or interval scale, G is a suitable measure of association of 
the variables. In educational settings, G is versatile when it comes to applications. G has been used, as examples, when 
analyzing the association between educational background and attitudes toward education or socioeconomic status 
and intelligence (Metsämuuronen, 2017), when analyzing college students’ reactions to instruction and courses that 
use educational technology (Good, 2015), and association between sex, number of siblings, and participation in higher 
education (Shafina, 2021) just to mention a few. Higham et al. (2016) studied internal mapping and metacognitive 
accuracy and noted that G is, by far, the most used coefficient of association in these settings. Discussion section 
presents some further advances of G and dimension-corrected G derived later in the article. 

In educational measurement settings, G and partial G (Goodman & Kruskal, 1954; see also Davis, 1967) are used, to 
some extent although rarely, in item analysis (e.g., Forthmann et al., 2020; Kreiner & Christensen, 2009; Nielsen et al., 
2017; Nielsen & Santiago, 2020). However, remembering that the coefficients G and D are close siblings, they have a 
strict connection to educational measurement settings because of their connection to rank-biserial correlation 
coefficient (Cureton, 1956) based on U test statistic (Mann & Whitney, 1947) and rank-polyserial correlation 
(Metsämuuronen, 2021) based on Jonckheere–Terpstra test statistic (JT; Jonckheere, 1954; Terpstra, 1952); these are 
special cases of D and G (Newson, 2008; Metsämuuronen, 2021). Metsämuuronen (2020b) based on Newson (2002) 
and Metsämuuronen (2020a) reminds us that D  correctly reaches the values +1 and −1, it is stable with extreme values, 
and it gives estimates for item discrimination power (IDP, see Lord & Novick, 1968) that are remarkably closer the real 
association between item and score than the widely used estimators item−total correlation (Rit = PMC) and item−rest 
correlation (Rir, Henrysson, 1963). In the practical educational testing settings (see, e.g., Aslan & Aybek, 2020; Delil & 
Ozcan, 2019), when the sample sizes may be small and the normality in the score cannot be ensured, these are 
advances.  

Because D and G are close siblings, the positive characteristics of D are expected to also be incorporated in G. Then, 
whenever D is used, G could have been used also. For example, even though in Metsämuuronen and Ukkola (2019) 
reliability of extremely easy and difficult tests of 1st graders achievement levels was analyzed by replacing Rit with a 
less-underestimating option D in the formula of coefficient alpha, G could have been used also. The latter option is 
discussed in Discussion. However, the characteristics of G in educational measurement settings are mainly unstudied as 
are its capability to reach the true association between item and score and its potential character of underestimate IDP 
with polytomous items that is characteristic to Somers’ D (e.g., Metsämuuronen, 2020b). Hence, the characteristics of G 
are worth studying in measurement modeling settings. This article aims to cover these gaps.  

Research questions 

The characteristics of G are studied within educational measurement modelling settings in three sub-studies. Study 1 is 
about the capability of G to reflect the true association between two variables under the specific condition in 
measurement modelling settings that a common latent trait drives both the score and the item. Study 2 is about with 
the underestimation of association in G from the theoretical viewpoint by connecting G with Greiner’s relation on the 
one hand and by using empirical datasets with real-world items on the other.  Studies 1 and 2 show that although G is 
accurate in reflecting the latent probability that the pairs of test takers are in the same order in the item as they are in 
the score, it underestimates the association in an obvious manner when the number of categories in an item are more 
than four. Hence, in Study 3, to enhance G for the polytomous datasets, a dimension-corrected G (G2) is derived and its 
characters are studied in relation to the relevant estimators G, D and D2, PMC, and polychoric correlation coefficient 
(RPC). Next section reviews the known characteristics of G relevant here.  

Some known characteristics of G 

Sample forms of G and D  

In general, both G and D estimate the probability that two randomly chosen cases have the same order in two variables 
(γ and δ, respectively; e.g., Van der Ark & Van Aert, 2015; Metsämuuronen, 2021). In measurement modelling settings, 
this is sometimes interpreted as the relationship between test score and the probability to choose the correct response 
(Forthmann, et al., 2020 based on Love, 1997).  

Let (x1, y1), …, (xN, yN) be a set of observations of the joint random variables g and X. The pairs of observation (xl, yl) and 
(xh, yh), where l < h, are concordant if the order for both elements agree, that is, xl < xh and yl < yh or xl > xh and yl > yh. The 
pairs are discordant when xl < xh and yl > yh or xl > xh and yl < yh.  If xl = xh or yl = yh, the pairs are tied, that is, they are 
neither discordant nor concordant.  

Let item g and the score X form an R × C cross-table with cell frequencies nij. We define  
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In estimating γ and δ, what is crucial are the number of pairs in the same direction (P), and the number of pairs in the 
opposite directions (Q). Notably, the quantities of P and Q by Eq. (1) are double of those we usually see in textbooks 
(e.g., Metsämuuronen, 2017; Siegel & Castellan, 1988). This notation above leads us to the correct asymptotic standard 
errors (e.g., Agresti, 2010; Goodman & Kruskal, 1979; see Study 3) instead of rough approximation (e.g., Somers, 1980; 
Metsämuuronen, 2017; Siegel & Castellan, 1988).  

As a benchmark of G, three outcomes are expected in calculating D, based on whether g or X is dependent, or we are 
interested in the symmetric association. In measurement modelling settings, the direction “g given X” is relevant 
because the testing theory postulates that the latent trait manifested as the score explains the behaviour in the item and 
not vice versa (e.g., Byrne, 2016; Metsämuuronen, 2017).† The number of all combinations of pairs related to this 
direction is  
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where Tg denotes the tied pairs common to both P and Q. Gonzalez and Nelson (1996) connect these ties with the 
predictor variable (Tp) although those seem to be related to the widths the scales rather than to predictor or criterion 
status of the variable (see Metsämuuronen, 2021).  

G proportions P – Q with relevant pairs, that is, with only those pairs where we know the direction: 

2r g
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− −
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.         (3) 

Notably, while calculating G, the tied pairs are excluded in the same manner as done in both sign test and Wilcoxon 
signed-rank test.  

D proportions P – Q with maximal number of pairs to the same direction including the number of tied pairs: 
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.        (4) 

Kim’s (1971) dX.g equals this form of Somers’ D. Henceforth, this form of Somers’ D is called D.  

Usually, the datasets include tied pairs between the variables. Then, P Q+  < 2 gP Q T+ +  and the magnitude of the 
estimates by G is higher than those by D; G gives us a more liberal estimate while D gives us more conservative estimate 
of the probability that two cases are in the same order in g and X. 

Connection of G and D with Jonckheere–Terpstra test statistic 

From the interpretation viewpoint of both G and D, their connection with the Jonckheere–Terpstra test statistic (JT) is 
worth noting. Metsämuuronen (2021) showed that  
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† In the literature related to directional coefficients (e.g., IBM, 2017; Newson, 2002, 2006; Siegel & Castellan, 1988), this direction is called “X 
dependent” and it is notated as (X|g). This logic comes from the GLM settings with eta squared where the metric variable (X) such as achievement 
cannot explain the nominal variable, e.g., the gender (g) and, hence, X is “dependent” and, consequently, g must be “independent”. However, within 
the measurement modelling settings, the same direction means that the latent trait manifested as the score (X) explains the order in the item (g). In 
these settings the relation of g and X is thought from conditional viewpoint as “g given X” (g|X). In this article, this logic familiar from the conditions is 
used in the notation: D(g|X) refers to “delta so directed that ‘g given X’ ” which, in the outputs of some generally known software packages such as 
IBM SPSS, SAS, as well as the R libraries, would be labelled “X dependent”. 
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where 
g

l h
l h

n n
<
∑ refers to the maximal number of pairs in one direction. Because JT indicates the number of logically 

ordered cases in g after they are ordered by X, D and G indicate a slightly modified proportion of logically ordered cases 
in g after they are ordered by X.  

Directional nature of G 

Somers’ D takes three values depending on whether the row or column is dependent or whether the association is 
symmetric. On the contrary, G provides us only one estimate and, hence, traditionally, it has been taken as a symmetric 
measure (e.g., IBM, 2017; Sheskin, 2111; Sirkin, 2006; Wholey et al., 2015). However, Metsämuuronen (2021) showed 
that, under certain conditions, G = D(g|X) and no other way. Also, if Tg,TX  > 0, G follows closer to D(g|X) than to D(X|g) 
although always G > D(g|X). That is, G is unambiguously a directional measure in the same direction as D(“g given X”) as 
in conditions or D (“X dependent”) as in GLM settings. This direction makes sense in measurement modelling settings.  

Kvålseth (2017, p. 10582; see also Higham & Higham, 2019; Masson & Rotello, 2009) notes that the estimates by G 
“may be highly inflated making it incomparable with other measures such as the frequently used Kendall's tau-b”. 
Several solutions have been proposed to correct G, (e.g., Bai & Wei, 2009; Highan & Higham, 2019; Hryniewicz, 2006; 
Kvålseth, 2017; Masson & Rotello, 2009; Rousson, 2007). However, Freeman (1986), Gonzalez and Nelson (1996), and 
Metsämuuronen (2021) propose that there is no “inflation” per se in G; G accurately reports a slightly modified 
proportion of logically ordered test-takers in the item after they are ordered by the score, taking into account only the 
pairs where the direction is known. The apparent “inflation” may be caused by the hidden directional nature of G.  

PMC as a benchmark to G and D in item analysis settings 

In item analysis settings, PMC = Rit, being one of the traditional indicators of IDP, has the interesting characteristic to 
always underestimate association between an item and score, and because of this, it can be used as a specific 
benchmark of an obvious underestimation of association for the other estimators.  

The reason for the underestimation of association by Rit is the phenomenon called the restriction of range (RR) related 
to PMC (see the literature in Meade, 2010; Sackett et al., 2007; Sackett & Yang, 2000). It is a known characteristic of 
PMC, already discussed by Pearson (1903), that when only a portion of the range of values of a (latent) variable is 
actualized in the sample, it affects the inaccuracy of the true association (see simulations in Martin, 1973, 1978; Olson, 
1980). In practical terms, when the scales of two variables differ from each other, as is common in measurement 
modelling settings with an item and a score, PMC always underestimates the true association between g and X (see 
algebraic reasons in, e.g., Metsämuuronen, 2016, 2017). Then, the magnitude of the estimates that are lower than those 
by PMC is indicative of an obvious underestimation of the association.  

Although D, being appealing in item analysis settings because it underestimates the IDP remarkably less than PMC does 
with binary items (Metsämuuronen, 2020a), it tends to underestimate IDP more than PMC when the item has three 
categories or more (Metsämuuronen, 2020b). Therefore, Metsämuuronen (2020b) proposed a dimension–corrected D 
(D2) that gives estimates that underestimate IDP less than PMC and RPC do without giving obvious overestimates. 
Because of the close relation of D and G, it is expected that G also underestimates IDP when the number of categories in 
the item increase. This is examined in Study 2.  

Study 1: Capability of G to reflect the true association between g and X 

Research question in Study 1 

Study 1 examines the extent to which G reflects the true association between two variables under the condition that is 
specific to measurement modelling settings that a common latent variable θ drives both item and score causing the true 
association between the item and the score to be always perfect. The behaviour of G is compared with D, PMC, and RPC 
by varying the latent variables (normal, skewed normal, and even), df(X) = C – 1, df(g) = R – 1, and the difficulty level of 
g (p).  
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Measurement and statistical models related to gamma  

The models based on latent variable modeling (see Raykov & Marcoulides, 2013) assume that a latent trait or a latent 
variable θ  drives the observed responses in a test item gi (xi). Assume a widely used simplified‡ one-factor 
measurement model where θ, manifested as an observed variable of scores X (yi) with C distinctive ordinal or interval 
categories, explains the behaviour in gi with R distinctive ordinal or interval categories and where R << C. θ is linked 
with xi by the weighting factor w ( 1 1iw− ≤ ≤ + ) and the error related to the item (ei): iθi ix w e= +  (e.g., Cheng et al., 2012; 
McDonalds, 1985).  The linking element is usually a coefficient of association, and, traditionally, has been interpreted as 
factor loading in factor analysis and structural equation modelling settings. However, in general, the weight element 
could be any coefficient of association such as PMC, RPC , or G. 

From the statistical model viewpoint, assume that the observed values in gi with xi = 1, …, R and X with yi = 1, …, C 
distinctive ordinal or interval categories, and R << C, share the common latent trait (θ). Then, the higher the latent trait 
is the more probable it is to reach a higher score (X) and, simultaneously, more probably the correct answer (or a 
higher value) in the test item. The threshold values of θ for each category in gi are denoted by iυ  and for each category 
in  X by jτ : g = xi, if 1iυ −  ≤ θ < iυ , i = 1, 2,…, R and the observed value of the score X = yj, if 1jτ −  ≤ θ < jτ , j = 1, 2, …, C, and  

0 0υ τ= = −∞  and R Cυ τ= = +∞ . Figure 1 illustrates the statistical model with a binary g (R =2); nij refers to the number 
of cases in in cell i, j. 

 
Figure 1. A latent variable θ  manifested in two ordinal variables g and X 

The theoretical condition of simplified one latent common trait causes the true association between g and θ to be 
perfect.§ The task in Study 1 is to examine how well G—as well as the related benchmarking coefficients—can detect 
this latent perfect association.  

Dataset used in Study 1 

For the simulation, three vectors with N = 1000 cases were created: a normal vector with N(0,1), a skewed-normal 
vector with Γ(2,1), and an even vector. Each vector was duplicated to form a pair of perfectly correlated variables. 
These pairs of vectors were manipulated so that one became a variable with a narrower scale (item g) and the other 
with a wider scale (score X). The scale of X related to normal and gamma distributions was set to vary with the fixed 
values df(X) = 4, 6, 12, 20, 25, 30, 40, and 60 and the even distribution with df(X) = 4, 9, 19, 24, 39, 49, and 99. The scale 
of g was set to vary with fixed values df(g) = 1, 2, 3, and 4, that is, the most commonly used scales from binary to 5-point 
Likert type of scales were covered.  

 

Results: G reflects the perfect true perfect association without loss of information 

Figures in Appendix  illustrate the difference between the estimators if df(g) = 1; the graphs with df(g) = 2–4 would 
give, essentially, identical information of the relation. Notably, in all conditions, G and RPC reproduce the perfect 
association between the item and the score while the estimates by D and Rit either underestimate the true association 
                                                        
‡ Obviously, several independent (or dependent) latent factors such as general intelligence, attitude toward the test, perseverance, and reading ability 
are related to the item responses in real-life settings. Hence, the common one-factor model is highly theoretical condition.  
 
§ Notably though, in real-life testing settings (see Study 2), the association, in fact, is rarely deterministic and we do not expect to see perfect 
association. 
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or behave unpredictably, specifically, with short tests. The reason why D and PMC behave unpredictably with short 
tests is related to the issue of tied pairs: G ignores tied pairs while D uses them, and PMC also counts the covariance in 
such cases.  

Let us take an item with p = 0.5, df(g) = 1, df(X) = 6 with the latent normality as an example (Table 1). Given the cross-
table in Table 1, PMC = 0.728, D = 0.841, G = 1.000, and RPC ≈ 1.000.** 

Table 1. A pair of variables with perfect latent association forming 2 × 7 Crosstable 

Count  
X Total 
0 1 2 3 4 5 6  

g 0 5 54 242 199 0 0 0 500 
1 0 0 0 199 242 54 5 500 

Total 5 54 242 398 242 54 5 1000 
 

In practical educational testing settings, if one of the general statistical software packages is in use, G and D are simple 
to calculate. In IBM SPSS, the syntax is CROSSTABS /TABLES=item BY Score /STATISTICS=GAMMA D. In SAS, the 
command PROC FREQ provides G and D by specifying the TEST statement by GAMMA, SMDCR options.  
Correspondingly, after defining C and D, RStudio, as an example, uses the syntax SomersDelta (x, y = NULL, direction = 
c("row", "column"), conf.level = NA, ...) for D and calc.gamma <- function(x), { x <- matrix(as.numeric(x), dim(x)), c <- 
concordant(x), d <- discordant(x), gamma <- (c - d) / (c + d) for G (see, e.g., 
https://gist.github.com/marcschwartz/3665743).  

The manual calculation can be done as follows. For G and D, P and Q are calculated the same manner, that is, given Table 
1, 

( ) ( ) ( )( )2 5 54 242 199 242 54 5 199

8

242 54 5

2 210,399
420,79

P = × + + × + + + + × + +

= ×
=

  

and  

Q = 0.  

G ignores the tied pairs of which the direction is not known and, hence, ( ) ( ) 1.000G P Q P Q P P= − + = = . The number of 
all pairs is 2 2 2 21000 2 500 500,000r i

i
D N n= − = − × =∑ . Then, ( ) rD P Q D= − = 420,798/500,000 = 0.841.  

Study 2: Underestimation of the association by G with the polytomous items 

Research question in Study 2 

The second research question is: under which conditions G underestimates IDP. The matter is first considered from the 
theoretical viewpoint by connecting G with Greiner’s relation. Second, empirical dataset is used to study the 
phenomenon with real-world items. 

Underestimation by G from the theoretical viewpoint 

Obvious underestimation of IDP by G is expected because of Greiner’s relation (Greiner, 1909) discussed by Kendall 
(1949), Newson (2002), and Metsämuuronen (2020b). With continuous variables, G = tau-a and, then, Greiner’s 
relation states that  

( )2 arcsina gXG Tau ρ
π

= = .        (7) 

Relation of PMC and G is illustrated in Figure 2. We note the linear nature of G in relation to the trigonometric nature of 
PMC. 

                                                        
** To estimate RPC, two alterations are needed in the traditional procedure (see, Drasgow, 1986). First, PMC embedded in the process cannot take the 
actual value 1 although a value as close to 1 as possible, such as 0.99 , can be allowed. Second, as small positive number as possible, such as 5010− , 
should be added to each logarithm term because logarithm cannot be taken of a zero. Hence, technically, RPC cannot reach the value 1 but it can be 
very close. For the analysis of RPC in this article, Zaiontz’ (2021) procedure for two-step estimation for manual calculation was used. 
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Figure 2. Relation of PMC (RXY) and Goodman–Kruskal G 

From Eq. (7), it is known that, in the case of two continuous variables, except for the extreme values ±1 and 0, the 
magnitude of the estimates by PMC tends to be greater than those by G; for G = 0.5 we would expect to see PMC = 
1 2 0.7071=  (see Fig. 2). Hence, we may predict that, if the association is not perfect (or near perfect) and when the 
number of categories increase, G tends to underestimate the true association more than PMC. 

Datasets used in Study 2 

In Study 2, the connection of G and PMC is studied by using two larger real-world datasets. Both are based on a 
national-level dataset of 4,022 test-takers of a mathematics test with 30 binary items (Finnish National Education 
Evaluation Centre [FINEEC], 2018). In this original dataset, the lower bound of reliability was α = 0.885, item 
discrimination estimated by PMC = Rit ranged 0.332 0.627gXρ< <  with the average 0.481gXρ = , and the difficulty levels 
of the items ranged 0.24 < p < 0.95 with the average p  = 0.63.   

For the training dataset, ten random samples of n = 50, 100, and 200 test-takers were picked from the original dataset. 
In each of the 30 datasets, 36 shorter tests were produced by varying the number of items, difficulty levels of the items, 
and df(g) and df(X). Polytomous items were constructed as compilations of the original binary items. Thus, the training 
dataset consisted of 11,160 test items from 1,080 tests with a varying number of test-takers (N = 50, 100, and 200) and 
items (k = 2–30), difficulty levels ( p = 0.55–0.76), reliabilities (α = 0.739–0.935), and degrees of freedom in the item 
(df(g) = 1–15), and in the score (df(X) = 12–27). As benchmarks of G, the estimates by PMC and D were produced for all 
items and RPC for half of the datasets (k = 5,580). Selected characteristics of the items are collected in Table 2. 

The training dataset was limited to relatively short tests (df(X) < 28). Hence, another dataset called “cross-validation 
dataset”, partly artificial, was prepared. The same original dataset was used, however, such that 30 items from it were 
duplicated and the response patterns of a portion of real test-takers was changed to cause mild changes in item 
difficulties and item–total correlations. The modified items were combined with the authentic ones to form a dataset 
with 60 binary items as parallel tests with odd–even items. For this dataset, 19 sets of n = 200 test-takers were picked, 
and 72 subtests in each set with the number of items of k = 30, 35, 40, 45, 50, 55, and 60 were produced.  Altogether 
19×72 = 1,368 sub-tests ending up to k = 29,887 items were produced. In this dataset, df(X) = 18–42. In Study 2, this 
dataset is referred to if the results between the datasets differ radically from each other. Both datasets are used also in 
Study 3. 

Results: G underestimates association in an obvious manner when there are more than 4 categories in an item 

Comparing Eqs. (3) and (4), the magnitude of the estimates by G are generally higher than those by D. Because of Eq. 
(7), obvious underestimation of IDP by G is expected when the number of categories in the item increase. Then, a 
relevant question is, what is the threshold number of categories for G to underestimate IDP? In the training dataset, this 
threshold appears to be four or five categories (Table 2; Figure 3); when the item has five categories or more (df(g) ≥ 
4), G tends to give obvious underestimates of IDP. In this regard, the cross-validating dataset suggest four categories.  
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Table 2. Selected characteristics of 11,160 items in the training dataset 

 
Average Association Standard deviation N 

df(g) PMC G D RPC PMC G D RPC PMC, G, and D RPC 
1 0.486 0.630 0.608 0.628 0.115 0.139 0.137 0.132 5943 2972 
2 0.625 0.672 0.647 0.703 0.088 0.093 0.093 0.090 2265 1129 
3 0.708 0.711 0.684 0.759 0.069 0.075 0.074 0.067 1029 514 
4 0.771 0.748 0.718 0.807 0.056 0.060 0.060 0.051 546 272 
5 0.812 0.770 0.739 0.835 0.050 0.057 0.056 0.051 354 183 
6 0.846 0.794 0.763 0.864 0.032 0.041 0.040 0.033 278 137 
7 0.873 0.817 0.784 0.887 0.029 0.038 0.037 0.029 190 95 
8 0.892 0.834 0.800 0.902 0.025 0.034 0.034 0.028 98 52 
9 0.911 0.856 0.822 0.919 0.026 0.040 0.038 0.023 127 63 
10 0.926 0.872 0.837 0.933 0.020 0.030 0.028 0.023 118 58 
11 0.940 0.888 0.854 0.944 0.013 0.021 0.023 0.011 85 42 
12 0.943 0.887 0.854 0.945 0.010 0.018 0.020 0.009 61 33 
13-14 0.944 0.886 0.856 0.947 0.008 0.014 0.015 0.006 66 30 
Total 0.596 0.675 0.650 0.696 0.168 0.131 0.129 0.140 11,160 5,580 

 
Figure 3. Average estimates by PMC, D, G and RPC by df(g) (k = 11,160 items) 

Three points of the relation of measures based on probability (G and D) and covariance (PMC and RPC) are highlighted. 
First, with binary items, the magnitude of the estimates by G are markedly higher than those by PMC and they 
correspond quite closely with those by RPC. Of the 5,943 estimates with df(g) = 1, only in four (0.1%), G < PMC. Knowing 
that the estimates by PMC always underestimate the true association and, if the estimates by RPC do not overestimate 
the association, in the binary settings, the estimates by G tend to be remarkably closer to the true association than those 
by PMC.  

Second, the higher the number of categories of the item gets the more probable it is to find PMC > G; with three 
categories, 3.3% of the items showed PMC > G. The parallel figure with four categories is 48.4%, and with five 
categories, 89.6%.  
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Figure 4. Relation of G and 1/df(g) 

Third, the tendency of G to produce estimates with a magnitude lower than PMC when df(g) ≥ 4 seen in Figure 3 leads 
us to the illusion that, at this range, always, G < PMC. However, Figure 4 illustrates the practical specialty embedded in G 
and PMC as well as in all estimators of association in item analysis settings that the estimate approximates the perfect 1 
the less there are items in the test and the more there are categories in the items. The average magnitude of the 
estimates by G can be modelled as a third-grade equation where 1/df(g) explains G. This model is elaborated on when 
deriving the dimension-corrected G in Study 3. 

Study 3. Dimension-corrected gamma 

Research question in Study 3 

It was shown in Study 1 that, unlike D and PMC, G is accurate in reproducing the perfect latent true association between 
the item and the score. Study 2 showed that, when the number of categories in the item exceeds four, the estimates by G 
tend to underestimate the IDP in an obviously manner. Hence, although G is accurate in reflecting the probability that 
the test-takers are in the same order in both the item and the score, it seems that the probability of same order as an 
indicator of IDP leads to obvious underestimates in comparison with covariance between the variables. Hence, it makes 
sense to develop a “dimension-corrected G” that would turn the linear nature of G into more trigonometric. If it behaves 
same as D2, this transformation would overcome the disadvantage of obvious underestimation by G.  

In what follows, first, some basic underlying principles for the derivations are discussed. Second, the underestimation 
in G is modelled based on the training dataset. Third, a dimension–corrected G (G2), specific to measurement modelling 
settings, is suggested. Also, a corrected form for D2 is suggested based on G2. Fourth, the characteristics of G2 are studied 
in relation to G, D, D2, PMC, and RPC.  

Principles underlying the modelling of the dimension-corrected G 

Based on Study 1 and 2, underlying the process of deriving the correction elements, six main notes (N) are made and 
five consecutive principles (P) are followed: 

N1. PMC always underestimates IDP in item analysis settings when ( ) ( )df g df X<<  (Study 1). 

P1. The estimate by G2 should be higher than that by PMC to overcome the obvious underestimation by G. 

N2. G reflects accurately the true association under the assumptions related to measurement modelling 
settings (Study 1). 

P2. With the deterministic patterns between g and X, G need not to be corrected. 

N3. G gives a credible estimate of IDP when df(g) = 1 (Study 2). 

P3. G should be corrected only when df(g) > 1. 

 

y = -1.0784x3 + 2.1582x2 - 1.4366x + 0.9866 
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N4. G tends to underestimate IDP the higher is the df(g) (Study 2). 

P4. Dimension-correction in G2 should affect more correction the higher the df(g) is. 

N5. In real-life settings, G reaches the maximal value 1 while PMC does not (Studies 1 and 2). 

P5. When G = 1, no correction is needed. Additionally, obviously, G2 should not exceed 1.  

N6. G correctly reaches the value 0. 

P6. When G = 0, no correction is needed. 

Modelling the underestimation in G 

The dimension-corrected G, henceforth G2, is based on modelling the underestimation in 11,160 empirical values of G in 
the training dataset. Figure 5 illustrates the starting point of the modelling.  

 

 
Figure 5. The original model of G and initial models G20 and G21 

The training dataset suggests that the model with cubic nature ( ) ( ) ( )3 21.08 2.16 1.44 0.99df g df g df g− + − +  has the best 
fit between the observed distribution of G and 1/df(g). However, this model is somewhat misleading because the 
polynomial curve should go through the points (1/df(g) = 0, G = 1) and (1/df(g) = 1, G = 0.62979). The first point 
indicates that, when there is only one item in the test, this item correlates perfectly with the “score” formed by this item 
causing G = 1. The second point refers to the expectation of the level G when df(g) = 1. During the derivation, the latter 
value is diminished. Hence, the final correction does not depend on the factual average value of G in df(g) = 1.  

Notably, the original model in the cross-validating dataset differs from the one obtained in the training dataset to a 
certain extent. The average estimate of G when df(g) = 1 in the cross-validating dataset (0.461) is significantly and 
notably smaller in magnitude than in the training dataset (0.630). The differences between the models leads to the 
realization that G2 derived in what follows seems to give conservative in the correction when the scale of the score 
exceeds 30 categories.   

The corrected model G20 passing through the points (1/df(g) = 0, G = 1) and (1/df(g) = 1, G = 0.62979) is:  

( ) ( ) ( )

( ) ( ) ( ) ( )

20 2 3

2 3

1.37021 2 11

0.37021 1 2 11

G
df g df g df g

df g df g df g df g

= − + −

 
= − − − + 

 
 

 

       
( ) ( ) ( )

2
0.37021 1 11 1
df g df g df g

 
= − − −  

 
,       (8) 
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where 0.37021 = 1 – 0.62979. The magnitude of the underestimation is unknown. For modelling purposes, the “correct” 
level of G (G21) was set to be linear through the points (1/df(g) = 0, G = 1) and (1/df(g) = 1, G = 0.62979: 

( )21
0.370211G
df g

= − .          (9)  

The average level of discrepancy between the theoretical level and the observed level at each level of df(g) is denoted 
by GE: 

( ) ( ) ( ) ( )

21 20

2

 

0.37021 0.37021 1 11 1 1

EG G G

df g df g df g df g

= −

  
 = − − − − −     

    

       
( ) ( )

2
1 11

df g df g
 

= −  
 

         (10) 

and, hence, the initial correction for G is 

( ) ( )

2

22
1 11EG G G G

df g df g
 

= + = + −  
 

.        (11) 

In the second phase, three switches are added to GE: ( )( )1df g −  related to P3 to restrict the correction only on the items 
with df(g) > 1, (1 − G) related to the principle P5 to restrict the correction only on items with non-deterministic 
patterns, and (G – 0) related to the principle P6 to restrict the correction only on items with non-zero association. After 
these, a suggested correction factor is  

( )( ) ( ) ( ) ( )( ) ( )21 1– – 0 1 –E Edf g G G G df g G G G− × × × = − × × .      (12) 

Then, combining Eqs. (10) and (11), a suggestion as the dimension-corrected G is 

( ) ( )( )
( ) ( )

2

2
2

1 11
df g

G G G G
df g df g

−  
= + − × −  

 
     

    ( ) ( )( )
( ) ( )

2
1 11 1 1

df g
G G

df g df g

 −  
 = × + − × −     

      (13) 

Eq. (13) can be further modified into form 

( )( )2 1 1G G G A= × + − ×          (14) 

where  

( )
( ) ( )

2
1 11

df g
A

df g df g
 −

= −  
 

.         (15) 

The correction in Eq. (13) fits the positive values of G. Because of the symmetry in the values of G, a more general form 
of G2, comprising also the negative values of G, is 

( )( )( )2 1 1G G abs G A= × + − × .        (16) 

Notably, the key element A for the dimension correction in Eq. (14) is the same as in D2 (Metsämuuronen, 2020b). 
However, G2 includes one switch more than D2 (the element G – 0) and, hence, if D = 0, the form of D2 presented in 
Metsämuuronen (2020b) leads automatically to a non-zero estimate when df(g) > 1. Therefore, it would be better to 
use the same correction elements as in G2 also in D2. Then, a corrected form of D2 parallel to G2 is: 

( )( )( )2 1 1D D abs D A= × + − × .        (17) 

This corrected version of D2 is used in the comparison of the estimates in what follows. Because of Eqs. (3) and (4), 
except in the case when there are no tied pairs, the magnitude of the estimates by G2 exceed those by D2.  
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Limits of G2 

When df(g) = 1, G = –1, 0, +1, G2 = G, otherwise G2 > G. In the theoretical extreme case that df(g) = ∞, that is, with a 
continuous item and infinite number of test-takers with a unique item category (to form an infinite number of 
categories in the item), 

( )
( ) ( )

2

21 1lim lim 1 1 1 1
df g

A
df g df g

 −
= − = × =  

 
       (18) 

and, then, the correction in Eq. (15) seems to lead us to the triviality that, with continuous variables, G2 = 1   seemingly 
irrespective of the actual association between the item and the score. However, with indefinitely long “parallel tests”, 
the association between the sub-tests and the score approximates the ultimate magnitude of PMC = G2 = 1. Hence, in 
item analysis settings, with indefinitely many categories in the item(s), the score would also contain indefinite number 
of categories and, then, G approximates the magnitude of 1. Nevertheless, Eq. (18) hints that when two variables with 
different scales are independent from each other, another kind of correction than provided by Eqs. (14) and (16) may be 
needed. This limitation of G2 is necessary to keep in mind if applying it to independent items.  

Asymptotic sampling variance and standard error of G2 and corrected D2 

Because the statistical properties of G are well documented (e.g., Agresti, 2010; Goodman & Kruskal, 1979; Siegel & 
Castellan, 1988), the sampling variance and, hence, the asymptotic standard errors (ASE) of G2 are known in the cases 
of df(g) = 1 and G = ±1 and 0 because, in these cases, G2 = G:  

( )
( )

2

22 2
4

,

16
G G ij ij ij

i j
n QC PD

P Q
σ σ= = −

−
∑         (19) 

that leads to asymptotic standard error  

( )
( )2

1 2 1 2
,

4( ) ( ) ij ij ij
i j

ASE G ASE G n QC PD
P Q

= = −
+

∑ .     (20) 

and, under the hypotheses of independence,  

( ) ( ) ( )2 2
0 2 0

,

2 1( ) ( ) ij ij ij
i j

ASE G ASE G n C D P Q
P Q N

= = − − −
+ ∑     (21) 

where P, Q, Cij, and Dij are as defined in Eq. (1). Of these, the former is used when calculating confidence intervals and 
the latter when testing hypotheses. To derive the corresponding sampling variance for the case of df(g) > 1, by using 
Eqs. (13) and (14) and the basic laws of variance, we get 

( )( ) ( ) ( )( )
( ) ( ) ( )

2 2 2 2
2

2 2 2

( )

1

G VAR G G G A VAR G A VAR G VAR G

A VAR G A VAR G

σ = + − × = + × −

= + × − ×
.    (22) 

where A is as in Eq. (15). With the range 0 1X≤ ≤ + , that is the normal range to use G2, ( ) ( ) 22VAR X VAR X≥    . Then, 

we can get the higher boundary of the sampling variance: 

( ) ( ) ( ) ( ) ( )( )22 2 2 2
2 1 1 1G A VAR G A VAR G VAR G A VAR Gσ  ≤ + × − × = × + × −     .   (23) 

Consequently, 

( ) ( )( )

( )
( )

( )
( )

2
1 2

2 22
2 4

, ,

( ) 1 1

4 161 1ij ij ij ij ij ij
i j i j

ASE G VAR G A VAR G

n QC PD A n QC PD
P Q P Q

 ≤ × + × − 

 
= − × + × − × − 

 + + 
∑ ∑

 (24) 

and, under the hypotheses of independent variables,  

( ) ( ) ( )

( )
( ) ( )

2 2
0 2

,

2 22
2

,

2 1( )

4 11 1

ij ij ij
i j
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∑
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Similar manner, the sampling variance of the corrected D2 is  

( ) ( )( )2 2
2 1 1D VAR D A VAR Dσ  ≤ × + × −  .       (26) 

In the dichotomous case, and when D = ±1 or 0, D2 = D and the asymptotic sampling variance of the corrected D2 can be 
approximated as  

( ) ( )( )( )2

22 2
4

,

4
D D ij r ij ij i

i jr

n D C D P Q N n
D

σ σ= = − − − −∑       (27) 

which leads to asymptotic standard error usable when calculating the confidence intervals as 

( ) ( )( )( )2

2 2
,

2( 1) ( 1) ij r ij ij i
i jr

ASE D ASE D n D C D P Q N n
D

= = − − − −∑     (28) 

and, under the hypotheses of independent variables, usable when testing hypotheses, as 

( ) ( )2 2
2

,

2 1( 0) ( 0) ij ij ij
i jr

ASE D ASE D n C D P Q
D N

= = − − −∑      (29) 

as in Metsämuuronen (2020b). However, when df(g) > 1 and D differs from 0 and 1, asymptotic standard errors are 
calculated parallel to those of G2 as 
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and 

 

( ) ( )( )
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2
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,
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∑

∑

 .    (31) 

The former is used in estimating confidence intervals and the latter when testing null hypotheses. 

Numerical example  

As a numeric example of calculating G2 and related ASEs, and confidence interval, let us use a polytomous dataset with 
N = 25 cases as in Table 3 adapted from Cox (1974, p. 177) and used by Drasgow (1986, p. 70). Let us assume that the 
variables are related to item g and score X. 

Table 3. A hypothetic dataset (Cox, 1974; Drasgow, 1986) 

g X  g X  g X  g X  g X 
0 72  1 77  1 87  1 99  2 85 
0 88  1 78  1 88  1 101  2 96 
0 112  1 80  1 92  1 104  2 96 
1 69  1 81  1 92  1 104  2 103 
1 72  1 86  1 93  1 108  2 104 

        Used by permisson of Biometric society 
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Table 4. Contingency table based on Table 3 

 

X 

Total 69 72 77 78 80 81 85 86 87 88 92 93 96 99 101 103 104 108 112 

g 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 3 

1 1 1 1 1 1 1 0 1 1 1 2 1 0 1 1 0 2 1 0 17 

2 0 0 0 0 0 0 1 0 0 0 0 0 2 0 0 1 1 0 0 5 

Total 1 2 1 1 1 1 1 1 1 2 2 1 2 1 1 1 3 1 1 25 

 

For calculating G and G2, based on Eq. (1),  

                                                         ,  

                                                         ,  

                                  ,  

                                  ,  

and, hence, 

180 114 0.224
180 114

P QG
P Q
− −

= = =
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.  

For df(g) = 2,  
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2
1 1 1 11 0.125

2 4
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= − = × =  

 
  

and, then,  

                                                                                                                    . 

As benchmarks, the estimate of the observed association by PMC is Rit = 0.185 and of the inferred association by the 
polychoric correlation RPC = 0.123, although the latter value depends on the estimation method to some extent, and 
Somers’ D(g|X) = 0.219, and corrected D2 = 0.240. Notably, the corrected form of D2 gives estimates that are closer the 
value zero than the original, uncorrected form of D2 (cf. D2 = 0.317 in Metsämuuronen, 2020b). 

For the ASEs,  

                                                               ,  

                                                                                                     ,  

                                                                         , 

and  
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                                                                                                           , 

 

and 

 

                                                                                              

                                                                                                         .  

Both G and G2 estimate the theoretical probability γ. Then, the traditional asymptotic 95% confidence interval for the 
true γ by G is  

]0.975 1(24) ( ) 0.224 2.391 0.2493 0.372,0.820G t ASE Gαγ = ± × = ± × = −    

and by G2 

                                                                                                                                .  

Because Eq. (23), the factual interval in the latter interval is narrower than given here. The asymptotic significance can 
be approximated by Z test statistic 2

0 2( )
GZ

ASE G
γ−

= . When testing the hypothesis γ = 0,  

0

0.246 0.973
( ) 0.2527

GZ
ASE G

= = =   

leading to conclude that, given Table 3, the true γ could be zero (p = 0.165). This is indicated also by the confidence 
interval; zero belongs to the interval. 

General characteristics of G2 

G2 behaves according to the six principles set for correction. First, the estimates by G2 tend to be higher than those by 
PMC (see Figure 6). Second, G2 does not correct G when item discrimination is deterministic and G = 1 or G = 0. Third, 
the estimates by G are not corrected when df(g) = 1. Fourth, the higher df(g) is the greater the correction is in G2. Fifth, 
G2 does not produce out-of-range values. Of the 11,160 items on the simulation, none showed a value that was out of 
range regarding the limits of correlation. Notably, the magnitudes of the estimates by G2 and RPC are very close each 
other up to four categories in items after which the magnitudes of the estimates by D2 are very close to RPC.  

 

 
Figure 6. Average estimates of selected indices of IDP by varying df(g), k = 11,160 items 

Overall, when it comes to correcting the obvious underestimation of association between an item and score in G, G2 
seems to behave logically at all levels of df(g) used in the simulation. On average, G2 underestimates the IDP remarkably 
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less than PMC, and notably less than G, as was the motivation for its derivation. The magnitude of the estimates by G2 
follows closely to that by the corrected D2, which is expected because of the identical correction factor. Also, the 
variability in the magnitudes of the estimates by G2 is smaller than that by G at each level of df(g) > 1. 

Obvious underestimation and potential overestimation in G2 

A simple criterion for the obvious underestimation in estimates by G2 is whether the magnitude of the estimates is 
lower than those by PMC. As a benchmark of G2, the original G produced 2,435 such estimates (21.8%) where PMC > G. 
Notably, G2 produced just 23 such estimates (0.2%). As a benchmark, the corrected D2 produced 4,155 (37%) such 
estimates. It seems that the probability of obtaining obvious underestimation in real-life datasets is very low while 
using G2. 

With the condition of deterministic item discrimination, the value G2 = G = 1 is accurate in reflecting the proportion of 
logically ordered test-takers in the item after they are ordered by the score (see Study 1). Also, if RPC does not 
overestimate IDP when df(g) = 1, it is unlikely that G2 = G would obviously overestimate IDP with binary items (see 
Study 2). The magnitude of the estimates by G2 is higher in comparison to that of D2; this cannot be taken as an obvious 
overestimation because it is caused just by a different logic of calculating the probability.   

Possible overestimation of IDP by G2 in the polytomous case is not easy to evaluate in strict terms. If the magnitude of 
the estimates is higher than 1, those would be obvious overestimates. In the training and cross-validating datasets, 
none of the items exceeded 1. One potential criterion for overestimation is the “Guttman boundary” used by 
Metsämuuronen (2020b) when assessing a possible overestimation in D2. Guttman boundary refers to the theoretical, 
maximally discriminating Guttman-patterned datasets, so-called Guttman scale (Guttman, 1950). In a Guttman-
patterned dataset, G gives the maximal estimate 1 while the estimates by PMC are always smaller than 1. Assuming a 
score without ties, in the binary case, the highest value of Rit approximates max 0.866gXρ =  (see Metsämuuronen, 2020b; see 

also the latter set of Figures in Appendix) and, hence, the lowest point of the difference is PMC 1 0.866 0.134G − = − =  (see 
Figure 7).  

The values of G – PMC or G2 – PMC that exceed the Guttman boundary strictly indicate that the magnitudes of the 
estimates by G or G2 and PMC are unexpectedly far from each other. However, this does not necessarily mean that the 
estimates by G2 are overestimated; it may also indicate that the estimates by PMC are radically underestimated or that, 
in these cases, probability as an indicator of IDP detects more effectively the discrimination power in comparison with 
the covariance by PMC. Anyhow, as a rough tool, the Guttman boundary may indicate some latent behaviour of G2 in 
comparison with G. 

In a binary case, this Guttman boundary follows an ellipse with the parameters x0 = 0.5, y0 = 0, a = 0.5 and b = max 0.866gXρ =

: 

( ) ( ) ( ) ( )2 2 2 2
0 0

2 2 2 2

0.5 0
1

0.5 0.866
X x Y y p Rit

a b
− − − −

+ = + =       (32) 

(Metsämuuronen, 2020b), where 0.866 refers to the limit of the maximum value of PMC in the deterministic pattern in 
the binary dataset. From (32) we solve Rit:  

( )2
2

2

0.5
PMC 1 0.866

0.5
p

Rit
 −
 = = − ×
 
 

       (33) 

and, then, with the deterministically discriminating items, 

( )2
2

2

0.5
PMC 1 1 0.866

0.5
p

G
 −
 − = − − ×
 
 

.       (34) 

Guttman boundary is illustrated in Figure 7 where, notably, the asymmetry in the distribution points to a limitation in 
the original dataset: in the dataset with p  > 0.60, it is more probable to obtain extremely easy items with high p than 
extremely difficult items with low p.  
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Figure 7. Guttman-pattern as a limit for the possible overestimation in G2; G2 ‒ PMC by p; df(g) = 1, k = 5 943 estimates 

In the training datasets, 131 out of 11,160 estimates by G (1.2%) exceeded the Guttman boundary, all with df(g) = 1 
(Figure 8). G2 produces one additional estimates of this kind totalling up to 132 cases (1.2%). The magnitude of the 
possible overestimation ranges 0–0.047 units of correlation with the average of 0.013.  

 

 
Figure 8. Possible overestimation and obvious underestimation in G and G2 

Discussion 

The aim of the article was to study the characteristics of Goodman–Kruskal gamma in measurement modelling settings. 
G in general is very versatile when it comes to estimating the association between two variables with ordinal scale in 
educational settings (see, e.g., Good, 2015; Higham et al., 2016; Metsämuuronen, 2017; Shafina, 2021). By knowing the 
hidden directional nature of G to the same direction as we usually use eta squared in GLM settings (Metsämuuronen, 
2021), it is good to be careful in its interpretation in the case that the scales of the variables differ from each other.  

In measurement modelling settings related to educational realm, for example in item analysis of achievement or 
attitude tests, G appears to be a superior alternative for Rit and Rir with binary items and with polytomous items up to 
four categories. G appeared to be unexpectedly reliable as an estimator to produce accurately the latent perfect 
association between the item and the score irrespective of the distributions, degrees of freedom, the number of tied 
pairs and tied values in the variables, or the difficulty levels in the items. From this viewpoint, G carries the same 
characteristics as polychoric correlation coefficient although, from the computational viewpoint, RPC is notably more 
complicated to calculate. However, G in comparison with Rit, tends to underestimate IDP in an obvious manner when 
the number of categories in the item exceeds four. Hence, a dimension–corrected G, G2, was derived for G.  
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Based on the sub-studies in this article, some advantages of G and G2 in relation to Rit, Rir, RPC, D and D2 in measurement 
modelling settings are the following (cf. Metsämuuronen, 2020a, 2020b): 

1. G and G2 are accurate in reflecting the latent perfect association between the item and the score unlike D, Rit, and 
Rir, because the last is based on the same mechanics as Rit. In this respect, G and G2 have the same character as RPC. 

2. G and G2 reach the values ±1 accurately, while Rit and Rir cannot reach the limits of correlation and RPC cannot 
reach the extreme value with standard procedures.  

3. G and G2 are more robust for extreme observations, nonlinearity, and difficulty levels of the item than Rit and Rir 
because of being based on ranks. 

4. G and G2 are superior to Rit and Rir with dichotomous (G and G2) as well as polytomous items (G2) because, most 
probably, they produce an estimate that underestimates IDP less than Rit and Rir and, to some extent, than RPC.  

5. G and G2 utilize the known composite of items and score while RPC refers to unknown, unreachable, and 
hypothetical variables that are difficult to use in further research. 

6. G and G2 are applicable and accurate with non-normal datasets as well as sparse, small, or large cross-tables, while 
the applicability and accuracy of the estimation result of the Rit and Rir depend on the normality of the 
phenomenon. 

7. G and G2 have a logical directional nature from the measurement modelling viewpoint; they indicate how well the 
latent trait (score) explains the responses in the manifested variable (item). 

8. G and G2 make it possible to detect the maximally discriminating test items while Rit and Rir cannot detect this 
condition with real-life settings.  

9. G and G2 are reasonably easy to calculate, even manually, in practical test settings, while the calculation of RPC, for 
example, requires complex procedures and specific software packages. 

10. G and G2 reach the meaningful direction of association strictly while D gives three options.  

11. G and G2 underestimate IDP less than D and D2 do. 

Although D and D2 are offered as appealing alternatives to Rit and Rir in item analysis settings by Metsämuuronen 
(2020a; 2020b), it seems that G and G2 may be even better options; G and G2 underestimate IDP even less than D and 
D2. At least, the estimates by G and G2 are less conservative in comparison with those by D and D2. 

Further possibilities of G and G2 in educational measurement 

PMC is an important referential coefficient of G and D, not only because it gives the benchmark for obvious 
underestimation for the estimates of IDP but because the underestimation in the reliability of the test score has been 
connected to the mechanical underestimation of true correlation by PMC. Metsämuuronen (2016), specifically, 
discussed the possibility to replace the range-restricted PMC with a “superior alternative” to PMC in the formulae of 
reliability to reduce the mechanical error in the estimates of reliability. G, and G2 could be these options.  

As an example, consider the most used estimator of reliability, coefficient alpha (Cronbach, 1951; Kuder & Richardson, 
1937; see the frequent use of coefficient alpha, as examples, in Cheng et al., 2012; Green & Young, 2009;  Trizano-
Hermosilla & Alvarado, 2016). Coefficient alpha  can be expressed in a form  
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(Lord & Novick, 1968) where k is the number of items, 2
gσ  is the item variance, and 

gXρ  is Rit = PMC. While knowing 
that Rit underestimates the association between an item and score because of technical reasons, and G and G2 
underestimate this association less, we could use a “dimension-corrected” alpha or “systematic mechanical error 
corrected” or, “SME-corrected” alpha such as 
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with binary items and  
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with polytomous and mixed items where the quantity of SME may be remarkably reduced. Metsämuuronen and Ukkola 
(2019) used this kind of estimator when assessing reliability of the test scores related to the achievement levels of 
academic school readiness in mathematics and mother language at the beginning of the first grade (n > 7,000)—instead 
of G and G2 they used D and D2 in Eqs. (36) and (37). The difference between the traditional alpha (αR) and the “SME-
corrected” alpha with D and D2 (αD) was the clearest in tests where the item variances were extreme, that is, with 
extremely easy and extremely difficult tests. This is caused by the fact that when the test difficulty is extreme, either 
very easy or difficult, PMC is severely affected by SME, while D and G are much more robust and stable. In the dataset, 
the lowest estimates of reliability by the traditional alpha were αR = 0.25, 0.43, 0.46, and 0.49, which were, by using a 
SME-corrected alpha, αD = 0.86, 0.62, 0.66, and 0.81, respectively. This indicates that although the traditional coefficient 
alpha indicates that the scores were not able to discriminate between the test-takers, the SME-corrected estimates 
indicate opposite: systematically, the higher achieving pupils were able to produce correct answers more probably than 
the lower-achieving pupils. Hence, factually, the score was able to discriminate between the test-takers decently if not 
highly. This means that even though the traditional alpha may doom a test to be undiscriminating, this may be caused 
by a technical error in estimating item–total correlation; the “real” reliability could be notably higher. If used G and G2 
instead of D and D2, the magnitudes of the estimates in Metsämuuronen and Ukkola (2019) would have been somewhat 
higher because the values by G are higher than those by D. The characteristics of these kinds of estimators are not 
discussed here and further studies in this area would be worth conducting. 

Another option to study further relates to a somewhat surprising by-result of the simulation with perfectly correlating 
latent variables. The simulation showed that G and RPC were the only ones in comparison that share the character of 
producing (correctly) the perfect correlation irrespective of the distributions of the item and the score, number of 
cases, degrees of freedom of the item and the score, the number of tied pairs and tied values in the variables, or the 
difficulty levels in the items. Then, it seems that G and RPC may have some common character yet unrevealed. 

Conclusions 

All in all, although Goodman–Kruskal gamma (G) is used relatively rarely in educational settings in comparison with 
PMC, it has promising potential as a coefficient of association. G can be used whenever two variables are measured, at 
least, in an ordinal or interval scale, and it estimates the probability that cases are in same order in two variables and, 
on the other hand, it indicates the proportion of logically ordered cases in a variable with a narrower scale after they 
are ordered by the variable with wider scale. In the item analysis settings, G appears to be unexpectedly appealing as an 
estimator of association between an item and a score because it indicates the probability to get a correct answer in the 
test item given the score, and it accurately produces perfect latent association irrespective of distributions, degrees of 
freedom, number of tied pairs and tied values in the variables, or the difficulty levels in the items.  

Because of carrying the same deficiency as Somers’ D and Kendall’s tau to underestimate the item discrimination power 
in an obvious manner when the number of categories increases in the item, a simple transformation of G, “dimension-
corrected G” (G2) is proposed to be used in the measurement modelling settings. Both G and G2 appear to be promising 
alternatives to item–total correlation and item–rest correlation coefficient in measurement modelling settings, G with 
binary items and G2 with binary, polytomous and mixed datasets. They can be used strictly in item analysis to indicate 
the item discriminating power and they could be used in estimating reliability of the score. Specifically, in the case that 
the test items are very easy or very difficult to the test-takers, new estimators named “SME-free estimators of 
reliability” that use G or G2 (or D and D2) instead of PMC in the estimators were introduced. These estimators may 
reveal that a measurement instrument doomed to be poor by the traditional coefficient alpha because of PMC 
embedded in the coefficient may, in fact, discriminate between the test-takers remarkably better than expected.  

Limitations  

One obvious challenge in generalizing the new coefficient is that G2 is developed for item analysis settings. In these 
settings, always R << C, and the items and the score are mechanically connected. Notably, the dimension correction 
leads, automatically, to approximate the perfect value G2 = 1 (or, in the ultimate pathological case, to G2 = ‒1) when the 
item is a continuous one and the sample size is large. Because of this, the applicability of G2 may be reduced to 
measurement modelling settings with items that have a narrow scale and it will not be wise to use G2 as a general 
coefficient without further studies and possible amendments. From this perspective it would be beneficial to compare 
G2 with the other corrections suggested for G (e.g., Bai & Wei, 2009; Highan & Higham, 2019; Hryniewicz, 2006; 
Kvålseth, 2017; Masson & Rotello, 2009; Rousson, 2007).  
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Second, the benchmark of the possible underestimation in G was PMC while, perhaps, a coefficient called r-polyreg 
correlation, an r-polyserial estimated by regression correlation (Livinstone & Dorans, 2004) would be a more proper 
benchmark. This coefficient, developed to overcome the challenge of the obvious overestimation in biserial and 
polyserial correlation coefficient, does not exceed 1, nor does it rely on bivariate normality assumptions (see Moses, 
2017). More studies may be valuable in this respect. 

Third, G2 is based on empirical items that embed the limitations of the original datasets to a certain extent. We do not 
know how much the estimates depend on the original dataset. From the cross-validating dataset it is known that when 
the scale of the score gets higher the model created by the training dataset gives conservative estimates with longer 
tests than df(X) > 28. There are no numerical sub-coefficients in the correction factors in Eqs. (10) and (11) although 
related to the original dataset. Hence, to some extent, G2 is more general than when it includes specific numerical 
coefficient(s) that are strictly dependent on the underlying dataset. Simulation with df(g) > 6–7 would enrich our 
knowledge of the applicability of G2. 
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Appendix 1.  

Estimates of IDP in Study 1 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1a. Estimates with short test by varying difficulty levels of the item  
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Figure 1b. Estimates with longer test by varying difficulty levels of the item 
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