logo logo International Journal of Educational Methodology

IJEM is a leading, peer-reviewed, open access, research journal that provides an online forum for studies in education, by and for scholars and practitioners, worldwide.

Subscribe to

Receive Email Alerts

for special events, calls for papers, and professional development opportunities.

Subscribe

Publisher (HQ)

RHAPSODE
Eurasian Society of Educational Research
College House, 2nd Floor 17 King Edwards Road, Ruislip, London, HA4 7AE, UK
RHAPSODE
Headquarters
College House, 2nd Floor 17 King Edwards Road, Ruislip, London, HA4 7AE, UK

' PLS' Search Results

...

Educational researchers, as well as researchers in other disciplines, often work with ordinal data, such as Likert item responses and test item scores. Critical questions arise when researchers attempt to implement statistical models to analyse ordinal data, given that many statistical techniques assume the data analysed to be continuous. Could ordinal data be treated as continuous data, that is, assuming the ordinal data to be continuous and then applying statistical techniques as if analysing continuous data? Why and why not? Focusing on structural equation models (SEMs), particularly confirmatory factor analysis (CFA), this article discusses an ongoing debate on the treatment of ordinal data and reports a short review on the practices of conducting and reporting SEMs, in the context of mathematics education research. The author reviewed 70 publications in mathematics education research that reported a study involving SEMs to analyse ordinal data, but less than half discussed how data were treated or guided readers through the analysis; it is therefore harder to repeat such an analysis and evaluate the results. This article invites methodological discussions on SEMs with ordinal variables in the practices of educational research. Subsequently, a standard for reporting SEMs with ordinal data is proposed, followed by an example. This standard contributes to educational research by enabling researchers (self and others) to evaluate SEMs reported. The example demonstrates, using real-life research data, how two different approaches for analysing ordinal data (as continuous or as a product of discretisation from some continuous distributions) can lead to results that disagree.

description Abstract
visibility View cloud_download PDF
10.12973/ijem.11.3.423
Pages: 423-442
cloud_download 31
visibility 75
0
Article Metrics
Views
31
Download
75
Citations
Crossref
0

...